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Microscopic study of steady convective flow in periodic systems
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~Received 9 January 1997!

We derive a consistent microscopic formulation that connects macroscopic hydrodynamic quantities with the
microscopic positions and velocities of the constituent atoms. Introducing a local fluid streaming velocity,
which is applied microscopically to separate the thermal and streaming motion of each particle, we obtain the
microscopic representations for the pressure tensor and heat flux vector. The formalism is applied to a par-
ticular two-dimensional flow pattern termed four-roller flow. Molecular-dynamics results obtained indicate that
the conservation equations are consistent at the microscopic level for four-roller flow. Molecular-dynamics
results for the effective transport coefficients, shear viscosity, thermal conductivity, and a cross coefficientj at
particular values of thek vector are obtained by analyzing the constitutive equations separately.
@S1063-651X~97!05607-9#
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I. INTRODUCTION

The hydrodynamical conservation equations@1# describe
the redistribution of the conserved quantities, such as m
momentum, and energy, within a fluid. In the hydrodynam
description the fundamental unit is the volume element t
must be large compared to atomic length scales, but s
enough such that bulk properties do not change within
element. In this description we can define the value o
conserved quantity, or its flux, at an arbitrary positionr and
time t. The velocity of a fluid element at a given point
time and space is called the local streaming veloc
u(r ,t). For steady flows, the streaming velocity at each po
in space is independent of time. The conservation equat
are closed by the constitutive equations, Newton’s law
viscosity, and Fourier’s law of heat conduction. The resu
ing Navier-Stokes equations are partial differential equati
that need to be solved for a given set of boundary conditio
Here our aim is to connect the hydrodynamic and mic
scopic descriptions for a particular class of flow problem
but rather than obtaining the Navier-Stokes equation,
keep the exact conservation equations separate from the
proximate constitutive equations and explore their proper
independently.

In the macroscopic formulation, the fluid element is t
fundamental unit. The major problem in connecting the m
roscopic and microscopic descriptions is developing a ph
cally meaningful definition of the streaming velocity; this
connected with the identification and separation of mac
scopic and microscopic length scales. In the microscopic
scription we have the positions and velocities of all the
oms. This description contains much more information th
the macroscopic description simply because so many m
variables are involved. In the microscopic picture, a given
of initial conditions and the equations of motion with a pa
ticular interaction potential give the position and velocity
each atom at each point in time. Often the fluid is subjec
an external field or boundary condition that induces a s
cific bulk flow pattern. This may be equivalent to a hydr
dynamic boundary condition. Macroscopically, the loc
streaming velocity of each of the fluid elements determi
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the bulk flow pattern. Our intention in defining the loc
streaming velocityu(r ,t) is to use it on the microscopic
length scale to identify the streaming component of the la
ratory velocity of each particle. This means that the obser
laboratory velocityṙ i(t) of each atom has two components:
local streaming velocity at the position of the partic
u(r i ,t) and a random or thermal velocityvi(t). Thus the
laboratory velocity of particlei is ṙ i(t)5vi(t)1u(r i ,t). To
determine the streaming velocityu(r ,t) some type of aver-
aging is required, either implicit or explicit in time or spac
The temperature arises naturally in the microscopic pict
through the random or thermal component of the velocit
vi(t).

In the development of the microscopic approach we be
by considering the densities of the macroscopically c
served quantities, that is, the mass, momentum and ene
as introduced by Irving and Kirkwood@2#. In the original
Irving-Kirkwood procedure the mass density was defined
be the ensemble average of an instantaneous mass de
Here we return to the concept of an instantaneous mass
sity defined for each ensemble member~or set of micro-
scopic initial conditions!. From a computational point o
view it is often more natural to calculate the system prop
ties from a single long system trajectory rather than to c
struct the ensemble average. Similarly, the momentum
energy densities can be defined at each instant along a ph
space trajectory. Substituting the microscopic representat
for the densities of conserved quantities into the conserva
equations gives microscopic representations for the pres
tensor and the heat flux vector, which can be used
molecular-dynamics experiments.

The numerical values of the transport coefficients co
tained in the constitutive equations are considered as in
quantities in the macroscopic hydrodynamic treatment. M
croscopic methods are required to determine the nume
values of the transport coefficients from the intrinsic prop
ties of the fluid. Such methods include, for example, t
Green-Kubo method@3# using equilibrium fluctuations or
nonequilibrium methods@4,5# such as theSLLOD algorithm
for shear viscosity@4# and those of Evans@6# and Gillan and
Dixon @7# for thermal conductivity. The Green-Kubo meth
476 © 1997 The American Physical Society
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56 477MICROSCOPIC STUDY OF STEADY CONVECTIVE FLOW . . .
ods can calculate transport coefficients at nonzerok vector,
but usually the nonequilibrium methods yield only zer
k-vector transport coefficients. However, an advantage of
nonequilibrium methods is that they often model the r
physical process and can therefore give information ab
the nonlinear behavior of a fluid.

One of the earliest nonequilibrium methods to calcul
the shear viscosity was to use a sinusoidal transverse f
~STF! to drive a streaming velocity of the same function
form @8#. Knowing the ratio of the amplitudes of the stream
ing velocity and the force, the shear viscosity can be ca
lated from the Navier-Stokes equation. This method cal
lates the k-vector-dependent shear viscosity that on
approaches the Navier-Stokes viscosity in the limit
k→0. This method was later exploited by Evans@9# to ex-
plicitly calculate thek- vector-dependent shear viscosity a
investigate its behavior as a function of both thek vector and
the amplitude of the driving force. Of particular interest w
the functional dependence of the viscosity upon thek vector
and the implications of this for the convergence of Burn
expansions in hydrodynamics@10#. Recently, calculations
have been performed using the STF method@11# and a dif-
ferent heat flux mode discovered. This mode is a heat
vector contribution proportional to the gradient of the squ
of the strain rate tensor. This mode leads to a heat flux in
absence of a temperature gradient and a transport coeffi
j. In planar Poiseuille flow@12# this heat flux mode intro-
duces a term in the temperature profile that is quadratic in
coordinate, as opposed to the standard temperature pr
that is purely quartic in the coordinate@13#. Despite this
change in the temperature profile, the heat flux remains
changed. Todd and co-workers have recently studied pla
Poiseuille flow using a sixth-order polynomial fit to th
streaming velocity when calculating the pressure tensor@14#
and a quadratic fit for the heat flux vector@15#. For the Evans
method of calculating the thermal conductivity@6# there has
been considerable work done@16# investigating the presenc
of solitonlike waves of energy~or enthalpy! propagating
through the fluid at supersonic speeds. More recently, th
have been a number of numerical studies of coupled tra
port processes in nonequilibrium situations. These meth
have been used to calculate the thermal conductivity o
weakly shearing Lennard-Jones fluid@17#. Evans@18# and
Daivis and Evans@19# have also calculated the thermal co
ductivity for strongly shearing fluids subjected to a we
temperature gradient.

In most previous nonequilibrium molecular-dynami
studies the streaming velocity is equal either to zero or
some known functional form~such as the linear streamin
velocity profile in planar Couette flow!. The STF method and
Poiseuille flow are two methods where the streaming ve
ity contains free parameters~either the amplitude or the func
tional form!. For the STF method the fundamentalk vector is
only one of the possible disturbances that is consistent w
the periodic boundary conditions and indeed any higher h
monic of the sinusoidal force can also be excited. The qu
tion that arises is how many harmonics do we consider to
part of the streaming velocity. Clearly all the harmonics ca
not be included as that would lead to the whole of ea
particle’s velocity being considered as the streaming velo
and hence there is no thermal component. Making the s
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ration between streaming and thermal motion by choosin
fixed number of harmonics effectively introduces a spa
average. A different class of allowed streaming velocities
associated with a two-dimensionalk-vector disturbance and
we refer to the first of these as four-roller flow~4RF! @20#, so
named for the four counterrotating vortices in each simu
tion cell. In this paper we investigate thek-vector depen-
dence of the transport coefficients for 4RF.

II. MACROSCOPIC HYDRODYNAMICS

Hydrodynamics is based upon a set of exact equati
that relate the fluxes of the conserved quantities, nam
mass, momentum, and energy, to various gradients. The
vation we give is appropriate for both two- and thre
dimensional systems. The standard conservation equatio
Eulerian form are

]

]t
r~r ,t !52“•@r~r ,t !u~r ,t !#, ~1!

]

]t
@r~r ,t !u~r ,t !#5“•@r~r ,t !u~r ,t !u~r ,t !1P= ~r ,t !#

1Fext~r ,t !, ~2!

]

]t
@r~r ,t !e~r ,t !#5“•@r~r ,t !e~r ,t !u~r ,t !1JQ~r ,t !

1P= ~r ,t !•u~r ,t !#1u~r ,t !•Fext~r ,t !,

~3!

which relate the mass densityr(r ,t), streaming velocity
u(r ,t), and energy densityr(r ,t)e(r ,t) to the pressure ten
sorP= (r ,t) and heat flux vectorJQ(r ,t). HereF

ext(r ,t) is an
external force density~force per unit volume! that couples to
each fluid element.

It is natural to separate the energy densityr(r ,t)u(r ,t)
into two distinct terms: a convective energy dens
1
2 r(r ,t)u(r ,t)2 and an internal energy densit
r(r ,t)U(r ,t), where

r~r ,t !e~r ,t !5 1
2r~r ,t !u~r ,t !21r~r ,t !U~r ,t !. ~4!

Substituting this equation into Eq.~3! and using the mass an
momentum conservation equations and the vector ident
u•@“•(ruu)#2“•(ru1

2u
2)5 1

2u
2
“•(ru) and “•(P= •u)

5P= T:“u1u•(“•P= ) gives the internal energy equation

]

]t
@r~r ,t !U~r ,t !#52“•@r~r ,t !U~r ,t !u~r ,t !1JQ~r ,t !#

2P= ~r ,t !T:“u~r ,t ! ~5!

and the streaming kinetic-energy equation

]

]t
@ 1
2r~r ,t !u~r ,t !2#52“•@ 1

2r~r ,t !u~r ,t !2u~r ,t !#

2u~r ,t !•@“•P= ~r ,t !#

1u~r ,t !•Fext~r ,t !. ~6!



th
ur
le
r
e

m
tio

ar
is

d

nt

ke

d
th

ve

u

tio
ut
r

-

ns
ing
uc-
he
nd
ted
s an
t

to
only
s-

-
the
he
we
s an
ive

b-

n

mi-
on-

and

t is
he
the
the
the
i-

478 56DAVID R. J. MONAGHAN AND GARY P. MORRISS
Notice that there is no external force density term in
equation for the internal energy. In the macroscopic pict
the only effect of an external field is to accelerate fluid e
ments, increasing the streaming kinetic energy; thus, in
moving the streaming components to obtain the internal
ergy, the direct effect of the external field is removed.

It is more convenient to consider the Fourier transfor
of the conserved quantities and to write the conserva
equations as a function ofk. We define the Fourier transform
of an arbitrary real tensorial functionT= ~r ! to be

T= ~k!5
1

L2 E0
L

dxE
0

L

dy T= ~r !eik•r. ~7!

For systems that we will consider, the periodic bound
conditions used in computer simulations imply that there
discrete spectrum of allowedk vectors@k5(2p/L)(n,m),
wheren andm are integers andL is the length of the simu-
lation cell#. The original functionT= ~r ! can be reconstructe
using

T= ~r !5(
k
T= ~k!e2 ik•r. ~8!

If T= ~r ! is a real function then the Fourier coefficie
Re$T= ~k!% is even ink and lm$T= ~k!% is odd. Using the defini-
tion of the Fourier transform and its inverse, the Kronec
delta and the delta function are given by

dk,k85
1

L2 E dr e2 i ~k2k8!•r,

d~r2r 8!5
1

L2 (
k
e2 ik•~r2r8!.

In a steady state, in an Eulerian frame each of the hydro
namic densities lose their explicit time dependence, so
partial time derivatives on the left-hand side~LHS! of Eqs.
~1!–~3! are zero. Fourier transforming these equations gi

k•(
k8

r~k2k8!u~k8!50, ~9!

2 i(
k9

(
k8

r~k2k9!u~k92k8!•k8u~k8!

5 ik•P~k!1Fext~k!, ~10!

2 i(
k9

(
k8

r~k2k9!u~k92k8!•k8U~k8!

5 ik•JQ~k!1(
k8

P= ~k8!T: i ~k2k8!u~k2k8!. ~11!

Notice that the discrete convolutions imply a particular co
pling between the Fourier coefficients at differentk vectors.
These arise from the nonlinear terms in the conserva
equations. To close these equations we use the constit
equations. The constitutive relation for the pressure tenso
e
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P= ~r !522h~“u0~r !s2@hB“•u~r !2r!I=, ~12!

whereh is the shear viscosity,hB is the bulk viscosity, and
I= is the identity matrix. For divergence-free flow the sym
metric traceless part of the strain rate tensor reduces to

@“u0~r !#s5 1
2 $“u~r !1@“u~r !#T%.

The constitutive relation for the heat flux vector is

JQ~r !52l“T~r !2j“$@“u0~r !#s:@“u0~r !#s%, ~13!

where l is the thermal conductivity. These two equatio
eliminate the pressure tensor and heat flux vector by defin
the transport coefficients for viscosity and thermal cond
tivity. The second term in the constitutive equation for t
heat flux vector is that proposed by Baranyai, Evans a
Daivis @11# and indicates that a heat current can be genera
in the absence of a temperature gradient. This introduce
extra transport coefficientj, which is related to the gradien
of the square of the strain rate tensor.

Fourier transforming the constitutive equations leads
expressions for the pressure tensor and heat flux where
terms of the samek vector are coupled by the standard tran
port coefficients as

P= ~k!5 ih@ku~k!1u~k!k#1p~k!I=, ~14!

JQ~k!5 iklT~k!2 ik
j

2 (
k8

$@~k2k8!•u~k8!#

3@k8•u~k2k8!#1@~k2k8!•k8#

3@u~k8!•u~k2k8!#%. ~15!

The transport coefficientj introduces coupling between dif
ferentk vector components of the streaming velocity and
heat flux. This arises from the double contraction of t
traceless symmetric velocity gradient tensor. In this paper
consider the transport coefficients as constants and thu
explicit k dependence is not included. Thus the effect
transport coefficient at one value ofk may differ from that at
another. A more general constitutive relation could be o
tained by allowingh to bek dependent. This would imply a
convolution in ther -space constitutive equation, which the
includes nonlocal effects.

III. MICROSCOPIC CONNECTIONS

A. Mass conservation

To make the connection between hydrodynamics and
croscopic classical mechanics we need definitions of the c
served densities. In the spirit of Irving and Kirkwood@2# we
consider a single phase-space trajectory evolving in time
define the mass density at timet @4#. The definition of the
mass density on the macroscopic scale for a fluid elemen
simply the mass of the element divided by its volume. In t
quasimicroscopic picture we imagine that the mass of
element is the number of atoms it contains multiplied by
mass of an atom. However, in the microscopic picture
mass density at pointr is zero if there is no particle at pos
tion r and infinite if there is a particle atr . In this way we
write the mass density as
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56 479MICROSCOPIC STUDY OF STEADY CONVECTIVE FLOW . . .
r~r ,t !5(
i
mid„r2r i~ t !…. ~16!

Integrating this expression over a fluid element would th
give the number of atoms times the mass. The LHS i
macroscopic hydrodynamic quantity and the right-hand s
~RHS! is its microscopic representation. It is important
realize that this definition is consistent with the Eulerian p
ture in that positionr is fixed in space and the only tim
dependence on the RHS is the time dependence ofr i(t),
which arises through the motion of the particles. Substitut
this mass density into the LHS of the mass conserva
equation~1!, using the identity

]

]r i
d~r2r i ![2

]

]r
d~r2r i !,

and comparing it with the RHS of Eq.~1!, we see that the
instantaneous momentum density is

r~r ,t !u~r ,t !5J~r ,t !5(
i
mi ṙ id~r2r i !. ~17!

There is no instantaneous representation for the stream
velocity u(r ,t) at the particle level that can be construct
from the instantaneous representations forr(r ,t) and
J(r ,t). Taking the ratioJ(r ,t)/r(r ,t) would give the stream-
ing velocity to be the particle velocity at the position of ea
particle and undefined elsewhere. This is not a useful de
tion of the streaming velocity. Any realistic representati
for u(r ,t) necessarily involves some form of coarse grain
in either space or time. Once a streaming velocity has b
determined~by whatever means!, we can divide the labora
tory velocity of each particle into a thermal partvi and a
streaming partu(r i), that is,

ṙ i5vi1u~r i !.

Using this representation, we can write the instantane
momentum density as

J~r ,t !5(
i
mivid~r2r i !1r~r ,t !u~r ,t ! ~18!

and we see immediately, from the definition ofJ(r ,t) in Eq.
~17!, that the thermal velocities do not contribute to the m
mentum current as

(
i
mivid~r2r i !50. ~19!

A key step in all the microscopic derivations is that iff (r ) is
a simple function ofr ~which is not an operator!, then
f (r )d(r2r i)[ f (r i)d(r2r i). There are some subtle poin
with regard to the interpretation of Eq.~18!. Both J(r ,t) and
r(r ,t)u(r ,t) are macroscopic quantities, defined for a flu
element, and are numerically equal. This implies that at
fluid element level Eq.~19! is equal to zero. Clearly this
separation between thermal and streaming parts is physi
correct. We can also interpret this equation as a condi
that the streaming velocity of a fluid element must satis
Thus
n
a
e
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ng
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u~r !5

(
iPE~r !

mi ṙ id~r2r i !

(
iPE~r !

mid~r2r i !, ~20!

where the summation is over particles within fluid eleme
E(r ), but this form foru~r ! will change discontinuously as
particles enter or leave the fluid element. The approach
we will adopt in the formal derivations that follow is t
derive the microscopic representations using the full part
velocities and then make the separation into thermal
streaming components.

B. Momentum conservation

Substituting the microscopic representation for the m
mentum density@Eq. ~17!# into the RHS of the momentum
conservation equation~2!, we find that

]

]t
@r~r ,t !u~r ,t !#52

]

]r
•(

i
mi ṙ i ṙ id~r2r i !

1(
i
mi r̈ id~r2r i !. ~21!

At this point we use the equations of motion to writemi r̈ i
5Fi1Fi

e2ami@ ṙ i2u(r i)#, where Fi
e denotes the externa

force on particlei and the last term is the isokinetic therm
stat@4#. For the external component of the force alone, co
sider a small volume elementE(r ) such that the force ex
erted on each particle is equal; then

(
i
Fe~r i !d~r2r i !5Fe~r ,t !(

i
d~r2r i !5Fe~r ,t !n~r ,t !

5Fext~r ,t !, ~22!

wheren(r ,t) is the number density,Fe(r ,t) is the force on
the volume element, andFext(r ,t) is the force density tha
appears in macroscopic conservation equations. When
thermostating term is substituted into Eq.~21! it gives zero
contribution from Eq.~19! ~on the volume element lengt
scale!.

In the remainder of this treatment we will assume that
internal forces arise from pairwise interactions~the introduc-
tion of three-body forces is possible, but more complicate!.
For pair interactions

(
i
Fid~r2r i !5(

i , j
Fi jd~r2r i !

5 1
2 S (

i , j
Fi j @d~r2r i !2d~r2r j !# D ,

whereFi j is the force on particlei due to particlej . Treating
the d function as an analytic function, we may expandd(r
2r j ) in a Taylor series aboutd(r2r i). This gives the
Oi j @r # operator that can be written either as an operator
functions ofr or as an operator on functions ofr i ,
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d~r2r i !2d~r2r j !5
]

]r
•r i j Oi j @r #d~r2r i !

5
]

]r
•r i j E

0

1

dl d~r2r i2lr i j !,

~23!

wherer i j5r j2r i . TheOi j operator is a cumbersome infinit
series@15#, but the second equality gives a much more use
integral representation@21#. Both of these forms allow us to
factor out the derivative with respect tor that we need to
match the hydrodynamic equation~2!. The momentum con-
servation equation then gives

r~r ,t !u~r ,t !u~r ,t !1P= ~r ,t !

5(
i
mi ṙ i ṙ id~r2r i !2 1

2(
i
r i jFi j E

0

1

dld~r2r i2lr i j !.

We now divide the velocity of each particle into thermal a
streaming parts and we find that the streaming componen
the RHS is equal to the streaming term on the LHS, tha
r~r !u~r !u~r !. Therefore, we can identify the microscopic re
resentation for the local pressure tensor at positionr at time
t as

P= ~r ,t !5(
i
mivivid~r2r i !

2 1
2(
i , j

r i jFi j E
0

1

dld~r2r i2lr i j !. ~24!

C. Energy conservation

To obtain the microscopic representation for the heat fl
vectorJQ(r ,t), we define the instantaneous microscopic e
ergy density to be

re~r ,t !5(
i51

N

eid„r2r i~ t !…, ~25!

where ei5
1
2mi ṙ

21 1
2( jf(r i j ) is the energy of particlei .

There is an implicit assumption in this definition of the e
ergy density. That is, that for each pair interaction, half
potential interaction energy is assigned to each of the
ticles. For homogeneous, isotropic systems this assump
seems plausible, but in other circumstances, far from e
librium, little is known of the validity of this assumption
Substituting the microscopic representation of the ene
density into the macroscopic energy conservation equa
~3!, differentiating the energy of particlei and thed function
with respect to time, combining these two terms, and us
the integral representation of theOi j operator, this become
l

on
s,

x
-

e
r-
on
i-

y
n

g

r~r ,t !e~r ,t !u~r ,t !1JQ~r ,t !1P= ~r ,t !•u~r ,t !

5(
i
ei ṙ id~r2r i !2 1

2(
i , j

r i jFi j • ṙ i

3E
0

1

dl d~r2r i2lr i j !. ~26!

The microscopic external field energysourceterm matches
that in the macroscopic conservation equation@using Eq.
~22!# but the thermostatsink term does not~because the ther
mostating mechanism was not explicitly considered in
macroscopic treatment!. We now divide the velocity of each
particle into thermal and streaming parts and find that
streaming components on the RHS cancel with the stream
term r(r ,t)e(r ,t)u(r ,t) on the LHS. Using the microscopi
form for the pressure tensor obtained previously in Eq.~24!,
we find that the heat flux vector can be written as

JQ~r ,t !5(
i

$eivi2mivivi•u~r i !%d~r2r i !

2 1
2(
i , j

r i jFi j •@vi1u~r i !2u~r !#

3E
0

1

dl d~r2r i2lr i j !.

However, there are still kinetic streaming components
maining inei . Removing these by defining the internal e
ergy of particlei to beUi5

1
2mivi

21 1
2( jf i j , the final result

for the heat flux vector is then

JQ~r ,t !5(
i
Uivid~r2r i !2 1

2(
i , j

r i jFi j •@vi1u~r i !

2u~r !#E
0

1

dl d~r2r i2lr i j !. ~27!

This result is equivalent to but substantially simpler than
infinite series representation obtained previously@15#. As
Eqs.~24! and~27! are the exact representations for the loc
pressure tensor and heat flux vector in an arbitrary geome
they reduce to method of planes results for Poiseuille flo

In transforming tok space it is sufficient to Fourier trans
form the microscopic representations for the pressure te
and the heat flux vector. The microscopic representation
the k-dependent pressure tensor in two dimensions is gi
by

P~k,t !5
1

L2 S (
i51

N

mivivie
ik•r i2 1

2(
i , j

N

r i jFi j Gi j ~k!D ,
~28!

where

Gi j ~k!5E dr eik•rE
0

1

dl d~r2r i2lr i j !

5
eik•r i2eik•r i

ik•r i j
.
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In the limit as k•r i j→0, Gi j (k)→eik•r i. As the forceFi j
5r i jf8(r i j ), it follows that the pressure tensor is symmetr
Similarly, thek-space representation for the heat flux vec
is the Fourier transform of ther -space representation equ
tion ~28!. The microscopic form for the heat flux vector is

JQ~k,t !L25(
i
Uivie

ik•r i2 1
2(
i , j

r i jFi j •H viGi j ~k!

2E
0

1

dl eik•~r i1lr i !@u~r i1lr i j !2u~r i !#J .
~29!

The heat flux vector depends on the explicit form of t
streaming velocityu~r ! and its integral along ther i j vector.
Clearly, if the streaming term is constant, the integral term
zero.

IV. THE ALGORITHM FOR FOUR-ROLLER FLOW

Molecular-dynamics simulations allow the calculation
all the k-vector components of the densities and fluxes
volved in both the conservation equations or the constitu
equations. This enables a systematic study of the validity
the application of hydrodynamics to small periodic syste
and the usefulness of particular constitutive relations. H
we consider the application of the microscopic formulati
to a particular two-dimensional flow field, four roller flow
The algorithm for 4RF@20# begins with the usual Newtonia
equations of motion, to which is added an external force te
Fe(r i). Because this external force does work on the sys
a thermostating mechanism that removes~heat! energy is in-
cluded in order to obtain a stationary state. We use a Ga
ian thermostat and the equations of motion are

mi r̈ i5Fi1Fe~r i !2amivi . ~30!

For the purposes of this simulation, we use theoperational
definition of the temperatureT, defined in terms of therma
velocitiesvi as

NkT5 1
2(

i
mivi

2. ~31!

Using Gauss’s principle of least constraint@22# to fix the
instantaneous value ofT yields the thermostating term in Eq
~30!. The value of the multipliera can be calculated by
differentiating Eq.~31! and substituting Eq.~30!. This form,
however, contains a term involving the time derivative of t
local fluid velocity u̇(r i). If we assume that this whole term
is zero, that is,

(
i
mvi•u̇~r i !50, ~32!

then the following value of the thermostating multiplier
obtained:
.
r

s

-
e
of
s
re

m
m

s-

a5

(
i51

N

vi•@Fi1Fe~r i !#

(
i51

N

mivi
2

. ~33!

It is important to realize that this is an assumption that le
to an approximate value fora, thus exact temperature con
servation is not achieved. However, for the standard pla
Couette flow geometry this approximation is equivalent
the assumption that the kinetic component of the shear st
Pxy
K is equal to zero. For the same soft-sphere fluid as

considered here, at a reduced strain rate of 1.0, the kin
component of the shear stress is 5% of the total shear st
hence we expect this approximation to be reasonable. F
molecular-dynamics simulation using Eq.~31! as the defini-
tion of the temperature, regular velocity scaling during t
simulation maintains the correct temperature, so the appr
mation in Eq.~32! leads only to a small drift in the tempera
ture between each velocity scaling.

The simplest two-dimensional nonzero, nonplanar dist
bance that is consistent with periodic boundary condition
4RF. The microscopic 4RF external field is defined as

Fe~r !5F1„2sin~k1x!cos~k1y!,cos~k1x!sin~k1y!…,
~34!

where kn52pn/L and L is the length of the molecular
dynamics cell~which is assumed to be square!. The ampli-
tude of the forceF1 is an input parameter. The expecte
response to this field is a flow of the same functional for
that is,

u~r !5u1~2sin~k1x!cos~k1y!,cos~k1x!sin~k1y!…, ~35!

where the amplitudeu1 is an observable. However, it is als
possible that for sufficiently large fields higher harmon
may be generated in the flow pattern. As the microsco
external forceFe(r ) and the streaming velocityu~r ! have the
same vector symmetry, the Fourier coefficients are

Fe~6k1 ,6k1!5
iF 1

4
~71,61! ~36!

and

u~6k1 ,6k1!5
iu1
4

~71,61!. ~37!

The6 signs in thex components correspond to each oth
and the6 signs in they components correspond to eac
other separately. The Fourier coefficients of macrosco
force densityFext(r ) are the same as those in Eq.~36!, but
with an extra factor of the number densityn.

As we have stressed, the most important connection
tween statistical mechanics and hydrodynamics is the ide
fication of the streaming velocityu(r ,t). In a computer
simulation it is easy to calculate the Fourier coefficien
r(k,t) and J(k,t) to arbitrary order ink. Either r(r ,t) or
J(r ,t) can then be reconstructed. Limiting the largestk vec-
tor in the reconstruction sets a limit on the minimum leng
scale over whichr(r ,t) or J(r ,t) can vary, thus effectively
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482 56DAVID R. J. MONAGHAN AND GARY P. MORRISS
introducing spatial averaging. Definingu(r ,t) as the ratio of
these reconstructed and spatially averagedr(r ,t) and
J(r ,t) gives a well-defined smooth representation
u(r ,t),

u~r ,t !5

(
k

kmax

J~k,t !e2 ik•r

(
k

kmax

r~k,t !e2 ik•r

, ~38!

wherekmax is the upper limit of thek-space summation. Any
finite truncation of thek-vector sum in the numerator and th
denominator introduces a spatial coarse graining and
lead to a smooth representation ofu~r !. This could equally
well be obtained through temporal coarse graining, thou
this particular avenue was not examined in this work. T
Fourier transform of the field allows free movement to t
hydrodynamic description developed previously and is c
sistent with the periodic boundary conditions. In order
define a hydrodynamic local streaming velocity it is assum
that only the fundamentalk vector of 4RF is excited. This
enables the field to generate the position-dependent stre
ing velocity profile shown in Fig. 1.

V. SIMULATION RESULTS

Molecular-dynamics calculations were performed
two-dimensional systems of 224, 896, 504, and 3584 s
disk particles of diameters @23#. The soft-disk potential
f(r )5«@(s/r )122(1/1.5)12# for r,1.5s was used with
f(r ) exactly equal to zero forr.1.5s. The force calcula-
tions were implemented in the program using a cell co
routine @24#. The system was fixed at a temperaturekT/«
51 and an average density ofrs250.9238. A fourth-order
Gear predictor-corrector algorithm was used to integrate
equations of motion, with a time step in the range 0.0
<Dt<0.004. The fundamentalk vector is determined by the
system size sok152pArs2/N, whereN is the number of
particles. The local streaming velocity was calculated fr

FIG. 1. Vector field velocity profile for 4RF. The flow patter
consists of four counterrotating vortices arranged in a simula
cell.
r
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the Fourier coefficients of the momentum density and m
density each five time steps and that local velocity is th
used to separate the random and streaming componen
the laboratory velocity of each particle. The results for
density harmonics were calculated for a system withk1
50.2018 andF150.25. We refer to this state as our standa
state in all that follows. Results were also obtained at ot
values ofk1 for a range of external field amplitudesF1 .
These results illustrate various trends and are prese
graphically.

The response of the system to 4RF is measured by ca
lating the Fourier harmonics for all system properties
k5(km ,kn), where24<m<4 and24<n<4. The simu-
lation results are then substituted in the conservation eq
tions and constitutive relations separately, thus both side
the conservation equations can be calculated and comp
giving a direct test of the applicability of the hydrodynam
description. The constitutive relations are used to obtain v
ues of the transport coefficients for the model fluid, whi
are effective in the sense that they apply to 4RF at a part
lar k value.

A. Mass conservation

The only nonzero responses in the mass density w
r(k2,0)5r(0,k2)520.0016 and r(k2 ,k2)5r(k2 ,2k2)
520.0010. As these are nearly three orders of magnit
smaller than the mean density, this suggests that the flu
highly incompressible. At larger values of the external fie
and forN53584 systems, larger harmonics were genera
although at the most the magnitude of these was only21%.
This is consistent with the incompressibility assumption us
frequently in macroscopic hydrodynamics. Here we can
the numerically observed incompressibility to simplify th
definition of the streaming velocity in Eq.~38! as the de-
nominator simply reduces to the average densityr.

B. Momentum conservation

The Fourier coefficients of the streaming velocity ha
been calculated at our standard state and the results show
the only significant coefficients are those of the fundamen
response. All other coefficients were at least two orders
magnitude smaller. As expected, the real parts of the co
cients were zero, but the imaginary parts were nonzero
particular the 4RF fundamentals giveJx(k1 ,k1)5Jx(k1 ,
2k1)52Jy(k1 ,k1)5Jy(k1 ,2k1)520.21161. This con-
firms the assumption~made previously! that at this value of
the external field amplitudeF150.25 only the fundamenta
mode of the streaming velocity is excited. Using Eq.~37!, we
find thatu150.9136. This, combined with the observed i
compressibility, leads to a number of simplifications in t
analysis that follows. In particular, the numerator of Eq.~38!
in the definition of the streaming velocity is assumed to co
tain only the fundamentalk vectors of 4RF.

Figure 2 shows the relationship between the observed
plitude of the streaming velocityu154Jy(k1 ,k1)/r ~choos-
ing the y component only because it is positive! and the
magnitude of the applied fieldF1 at different values ofk1 .
Apparently there is an approximately linear relationship b
tween the amplitude of the streaming velocityu1 and the
external fieldF1 and an increase inu1 with decreasingk1 .

n
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1. Case 1: k5„k1 ,6k1…

As u~k! is only nonzero fork5(6k1 ,6k1), the LHS of
Eq. ~10! is equal to zero. For the two choicesk5(k1 ,k1) and
k5(k1 ,2k1), the results can be written as

Pxx~k1 ,6k1!6Pyx~k1 ,6k1!5
nF1
4k1

, ~39!

Pyx~k1 ,6k1!6Pyy~k1 ,6k1!57
nF1
4k1

. ~40!

Using the fact that the microscopic pressure tensor@Eq. ~24!#
is symmetric gives

Pxx~k1 ,6k1!2Pyy~k1 ,6k1!5
nF1
2k1

. ~41!

The numerical results for our standard state are in exce
agreement with Eqs.~39!–~41!. Further, the numerical re
sults strongly suggest thatPxy(k)5Pyx(k)50 for all values
of k and that thereforePxx(k1 ,6k1)52Pyy(k1 ,6k1)
5nF1/4k1 . For k5(k1 ,k1), Pxx50.286 and Pyy5
20.283, which gives the LHS equal to 0.569, while the RH
is equal to 0.572. The same result also follows if we assu
mechanical stability on the length scaleL, so that
Pxx(k1 ,k1)1Pyy(k1 ,k1)50.

In Figure 3 we present the results forPxx(k1 ,k1) as a
function of external force amplitudeF1 for various values of
k1 . The lines are the predictions from Eqs.~39! and ~40!.

2. Case 2: k5„k2 ,6k2…

The LHS of Eq. ~10! is equal to zero and there is n
external field term, so this gives

Pxx~k2 ,6k2!6Pyx~k2 ,6k2!50, ~42!

FIG. 2. Graph showing thek vector and external field depen
dence of the streaming velocity. As the value ofk decreases, the
physical size of each roller increases, allowing a larger stream
velocity amplitude. The error is smaller than the size of the sy
bols.
nt

e

Pyx~k2 ,6k2!6Pyy~k2 ,6k2!50. ~43!

The numerical results agree with these equations, but t
also suggest that each individual term is equal to zero.

3. Case 3: k5„k2 ,0… and k5„0,k2…

For thesek vectors the LHS of Eq.~10! has terms that are
nonzero, but there is no external field term. Therefore, it c
be shown that

Pxx~k2,0!5Pyy~0,k2!5
ru1

2

8
, ~44!

FIG. 3. Graph of the results from the momentum conservat
equation fork5(k1 ,k1) at three differentk vectors. The points
represent the simulation data accurate to about 2%. The da
lines are the curves predicted by Eqs.~39! and ~40!.

FIG. 4. Graph of the momentum conservation results fork
5(k2,0). From the symmetry of the system these results are id
tical to those fork5(0,k2). Results for three differentk vectors are
presented. The points are the simulation values. The dashed
are the curves predicted by Eq.~44!. The error in the simulation
values was less than 2%.
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TABLE I. Fourier harmonics of the pressure tensor, heat flux vector, and internal energy that are re
for the energy conservation energy at the particular values ofk considered.

k JQx JQy k Pxx Pyy U

(k2 ,k2) 0.0259i 0.0294i (k1 ,k3) 20.0223 20.0020 20.0041
(k2 ,2k2) 0.0154i 20.0425i (k3 ,k1) 0.0020 0.0204 0.0032

(k1 ,2k3) 20.0218 20.0015 20.0028

k U (k3 ,2k1) 0.0024 0.0216 0.0032

(k1 ,k1) 20.0009 (k3 ,k3) 20.0002 0.0000
(k1 ,2k1) 0.0000 (k3 ,2k3) 20.0007 20.0003
lle

e

at

s a
-
t.

d-
nd
Pxy~k2,0!5Pyx~0,k2!50. ~45!

The numerical results for our standard state are in exce
agreement with Eqs.~44! and ~45! as Pxx(k2,0)50.0950,
Pyy(0,k2)50.0950, and the RHS is equal to 0.0964. Figur
compares the numerical results forPxx(k2,0) as a function of
external field amplitudeF1 with the predictions of Eq.~44!
at different values ofk1 . The agreement is good, except
larger-k values.
of

e

nt

4

C. Energy conservation

The energy conservation equation can be thought of a
balance between internal energystorageterms, viscous heat
ing energy productionterms, and the resulting heat curren
From the energy conservation equation~11! and, as before,
using the numerically observed incompressibility and inclu
ing only the 4RF fundamentals for the external field a
streaming velocity, it can be shown that
ru1
4

~1,1!•$@k1~k1 ,2k1!#U@k1~k1 ,2k1!#2@k2~k1 ,2k1!#

3U@k2~k1 ,2k1!#%1
ru1
4

~1,21!•$@k1~k1 ,k1!#U@k1~k1 ,k1!#2@k2~k1 ,k1!#U@k2~k1 ,k1!#%

5 ik•JQ~k!1
u1k1
4

$Pxx@k2~k1 ,k1!#2Pyy@k2~k1 ,k1!#1Pxx@k2~k1 ,2k1!#2Pyy@k2~k1 ,2k1!#%

1
u1k1
4

$Pxx@k1~k1 ,2k1!#2Pyy@k1~k1 ,2k1!#1Pxx@k1~k1 ,k1!#2Pyy@k1~k1 ,k1!#%. ~46!
S

h of
try
is
ntri-
In obtaining this equation we have assumed that the
diagonal terms in the pressure tensorPxy(k) andPyx(k) are
zero. We now consider different choices fork.

1. Case 1: k5„k1 ,6k1…

For this value ofk, due to the symmetry of the system w
expect thatPxx(0,0)5Pyy(0,0) and from Eqs.~42! and~43!
thatP= (k2 ,k2)50, so Eq.~46! reduces to

ru1k2
4

$U~k2,0!2U~0,6k2!%

5 i ~k1 ,6k1!•JQ~k1 ,6k1!1
u1k1
4

$Pxx~k2,0!

2Pyy~k2,0!1Pxx~0,6k2!2Pyy~0,6k2!%. ~47!
f-For k5(k1 ,k1), the simulation results~Table I! for the Fou-
rier coefficients on the LHS giveU(k2,0)2U(0,k2)
50.038420.0393520.0009 and the last term of the RH
gives Pxx(k2,0)2 Pyy(k2,0)1 Pxx(0 ,k2) 2 Pyy(0 ,k2)
5 (0.084120.095010.095020.0844)520.0003. The nu-
merical results for our standard state suggest that eac
these terms is individually equal to zero. On symme
grounds the LHS of Eq.~46! can be expected to be zero. Th
leaves the heat flux vector terms as the only nonzero co
butions, so

~k1 ,6k1!•@JQx~k1 ,6k1!6JQy~k1 ,6k1!#50. ~48!

The standard state givesJQ(k1 ,k1)5(0.0346,20.0340)i
and JQ(k1 ,2k1)5(0.0369,0.0371)i , both of which satisfy
Eq. ~48! almost exactly.
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2. Case 2: k5„k2 ,6k2…

In this case, combining Eq.~41! with Eq. ~46! gives

ru1
4

~k11k3!$U~k3 ,6k1!2U~k1 ,6k3!%

5 i ~k2 ,6k2!•JQ~k2 ,6k2!1
nu1F1

8

1
u1k1
4

$Pxx~k1 ,6k3!2Pyy~k1 ,6k3!

1Pxx~k3 ,6k1!2Pyy~k3 ,6k1!%

1
u1k1
4

$Pxx~k3 ,6k3!2Pyy~k3 ,6k3!%. ~49!

For our standard state the responses in many of the term
Eq. ~49! are small, but probably not negligible.

For k5(k2 ,k2), including the numerical results for a
terms in Eq.~49!, the standard state gives the LHS equal
0.0012 and the RHS equal to 0.0023. Fork5(k2 ,2k2), the
LHS is equal to 0.0010 and the RHS is equal to 0.0012. T
agreement is impressively good. If, however, we ignore
higher harmonics in Eq.~49!, then

~k2 ,6k2!•JQ~k2 ,6k2!52
nu1F1

8
; ~50!

for our standard state atk5(k2 ,k2) this gives the LHS equa
to 0.0223 and atk5(k2 ,2k2) this gives the LHS equal to
0.0234, while for both of these the RHS is equal to 0.02
Clearly, including the higher harmonics in both the intern
energy and the pressure reduces the discrepancy betwee
LHS and the RHS atk5(k2 ,k2), from 0.0041 to 0.0011, and
for k5(k2 ,2k2), from 0.0030 to 0.0002.

3. Case 3: k5„k2 ,0… and k5„0,k2…

For these two values ofk, Eq. ~46!, using Eq.~41!, gives

ru1
4

$22k1@U~k1 ,k1!1U~k1 ,2k1!#

1~k32k1!@U~k3 ,k1!1U~k3 ,2k1!#%

5 i ~k2,0!•JQ~k2,0!1
nu1F1

4
1
u1k1
4

$Pxx~k3 ,k1!

2Pyy~k3 ,k1!1Pxx~k3 ,2k1!2Pyy~k3 ,2k1!% ~51!

and

ru1
4

$2k1@U~k1 ,k1!1U~k1 ,2k1!#1~k12k3!@U~k1 ,k3!

1U~k1 ,2k3!#%

5 i ~0,k2!•JQ~0,k2!1
nu1F1

4
1
u1k1
4

$Pxx~k1 ,k3!

2Pyy~k1 ,k3!1Pxx~k1 ,2k3!2Pyy~k1 ,2k3!%. ~52!
in

is
ll

.
l
the

If we assume that the LHSs of Eqs.~51! and ~52! are both
zero, as the coefficientsU(k1 ,6k1)'0, and on the RHS of
each equation the coefficientsPxx(k1 ,6k3)5Pyy(k1 ,6k3)
5Pxx(k3 ,6k1)5Pyy(k3 ,6k1)'0, then we obtain the
simple result that

JQx~k2,0!5JQy~0,k2!5
inu1F1

8k1
. ~53!

For our standard state the numerical results giveJQx(k2,0)
50.1241i andJQy(0,k2)50.1234i , while the RHS is equal
to 0.1307i . Taking into account the observed numerical v
ues of all the Fourier coefficients in Eq.~51! gives
JQx(k2,0)50.1250i and Eq.~52! givesJQy(0,k2)50.1275i .
Both of these more careful calculations improve the agr
ment.

The balance equation~53! for the k5(2k1,0) gave good
results at higher values ofk1 and lower values of the externa
field F1 . However, the appearance of higher-order respon
led to more significant inconsistencies than those obser
for momentum conservation. This suggests that heat tran
is more complicated at larger fields or streaming veloc
amplitudes. There are also significant higher harmonics
the heat flux vector, such asJQx(k1 ,k3)520.0445i and
JQy(k3 ,k1)50.0398i . For the standard state at (k1 ,k3), the
conservation equation~46! is again accurately satisfied, bu
at the same state point withk150.1009 the conservation
equation is not satisfied. Like the discrepancy inJQx(k2,0) in
Fig. 5 at the same value ofk1 , we believe this is due to the
neglect of higher harmonics in the streaming velocity, p
ticularly at (k1 ,k3) and (k3 ,k1).

VI. SHEAR VISCOSITY

A. Case 1: k5„k1 ,6k1…

From the constitutive relation for the shear viscosity eq
tion ~14!, it can be shown thatk must be one of the funda
mentals for 4RF and that, for example, fork5(k1 ,k1),

FIG. 5. Graph of the internal energy conservation f
JQx(k2,0). Results for the three differentk vectors are shown. The
points are the values obtained from the simulation. A logarithm
scale is used on they axis for ease of presentation. The agreem
for larger values ofk was within statistical error, although a signifi
cant deviation occurred fork150.1009.
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486 56DAVID R. J. MONAGHAN AND GARY P. MORRISS
P= ~k1 ,k1!2p~k1 ,k1!I=5
hu1k1
2 S 1 0

0 21D . ~54!

Combining the two nonzero components gives

Pxx~k1 ,k1!2Pyy~k1 ,k1!5hu1k1 . ~55!

Using the result obtained from momentum conservation,
~41!, it can be shown that the viscosity is

h5
nF1
2u1k1

2 . ~56!

This route to the shear viscosity and for our standard s
this gives the effective viscosity~at F150.25! to be 3.1053.

B. Case 2: k5„k2 ,6k2…

This is not one of the fundamentals for 4RF so

P= ~k2 ,6k2!2p~k2 ,6k2!I=5S 0 0

0 0D . ~57!

C. Case 3: k5„k2,0… and k5„0,k2…

Again, this not one of the 4RF fundamentals, so

P= ~k2,0!2p~k2,0!I=5S 0 0

0 0D . ~58!

These two cases suggest that the off-diagonal elements o
pressure tensor are zero for these harmonics.

Figure 6 is a graph showing the variation of the viscos
with the applied external field for different values ofk1 . The
viscosity cannot be accurately determined when the exte
force is less than;0.1 because the signal-to-noise ratio
too small. Similarly, when the external force becomes
large (F1.;0.3), higher harmonics of the streaming velo
ity appear and the thermostating mechanism loses stab
As can be seen from Fig. 6, the viscosity decreases w
decreasingk1 . This is expected ask1 is directly linked to the

FIG. 6. k-dependent shear viscosities for 4RF. As the syst
size increases, the viscosity decreases, indicating that the great
number of particles in each roller, the less granular the system
q.

te

the

al

o

ty.
th

number of particles and hence the size of the simulation
L. The largerL, the less granular the roller becomes and
lower the viscosity.

The temperature of the system was fixed by the therm
stat term included explicitly in the equations of motion. If th
system achieves a steady state, then the average total int
energy^U&5^( iUi& will attain a steady value. Thus the en
ergy flow into the system from the external field is on av
age equal to the energy removed by the thermostat. Th
fore, the time derivative of̂U& will be equal to zero. Using
the assumption at Eq.~32!, this gives

2NkT^a&5K (
i
vi•F

e~r i !L 2K (
i
u~r i !•Fi L . ~59!

If all the particles have the same mass, then using Eq.~8! it
can be shown that

K (
i
vi•F

e~r i !L 5
iF 1

2m
@~1,21!•J~k1 ,k1!

1~1,1!•J~k1 ,2k1!#

5
nu1F1L

2

2
.

Using the constitutive equation~56!, we obtain a second in
dependent route to the shear viscosity

h5
r

u1
2k1

2 H 2nkT^a&1
1

N K (
i
u~r i !•Fi L J . ~60!

For our standard state we can compare values obtained
the two routes to the viscosity. The term̂u(r i)•Fi&
50.004 31 and̂a&50.054 91. Thus the viscosity from thi
route ish53.1034, compared withh53.1053 from the con-
stitutive equation~56!. Such good agreement between t
values of the viscosity from the two routes gives us con
dence that the thermostating mechanism is working c
rectly. Equation~59! is simply a balance between the ener
supplied to the system by the external field and the ene
removed by the thermostat. Although each estimate of
viscosity is not accurate to the number of digits quoted~but
rather has an accuracy of about 3–4 %!, the difference be-
tween the two numbers suggests that almost all the energ
removed by the thermostat~and not byad hocvelocity res-
caling!. Thus, despite the approximation used to calculate
instantaneous value ofa, Eq. ~32!, the thermostat is working
remarkably well.

VII. THERMAL CONDUCTIVITY

The same process can be repeated for the heat flux
stitutive equation~15!. Direct calculation of the heat flux
vector, temperature gradient, and streaming velocity am
tude allows the evaluation of the thermal transport coe
cients.

the
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A. Case 1: k5„k1 ,6k1…

For this case

JQ~k1 ,6k1!5 i ~k1 ,6k1!lT~k1 ,6k1!. ~61!

The numerical results for the standard state give a temp
ture harmonic of T(k1 ,6k1)560.001. The heat flux
vector JQ(k1 ,k1)5(0.0346,20.0340)i and JQ(k1 ,2k1)
5(0.0369,0.0371)i , but the RHS of Eq.~61! would suggest
that uJQu'0.0002. It is somewhat surprising that there is
response in the heat flux vector atk5(k1 ,k1) as almost no
temperature gradient is observed. Physically, this co
sponds to a heat flux in the opposite direction to the stre
ing velocity. Figure 7 shows the variation of theJQ(k1 ,k1)
harmonics as a function of field. The lines on the graph
second-order polynomial fits to the numerical data.

B. Case 2: k5„k2 ,6k2…

For this case both terms on the RHS of Eq.~15! contribute
nonzero terms as

JQ~k2 ,6k2!5 i ~k2 ,6k2!S lT~k2 ,6k2!1
ju1

2k1
2

8 D .
~62!

The numerical results for the standard state are
JQ(k2 ,k2)5(0.0259,0.0294)i and JQ(k2 ,2k2)5(0.0154,
20.0425)i for a temperature harmonic ofT(k2 ,6k2)
50.0067. From Eq.~62! we can obtain four different equa
tions, each of which has the same RHS. In the four cases
numerical value of the LHS is 9.45, 10.7, 5.7, or 15.7. Ta
ing the average of the LHS, we obtain

l10.624j510.7. ~63!

This is essentially one equation for the two unknownsl and
j.

FIG. 7. Plot showing the variation in the (k1 ,k1) harmonic of
the heat flux vector. The lines are a linear interpolation between
data points.
a-
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C. Case 3: k5„k2,0… and k5„0,k2…

This case is also of interest as the second term on the R
of Eq. ~15! is again nonzero. So

JQ~k2,0!5 i ~k2,0!S lT~k2,0!1
jk1

2u1
2

4 D ~64!

and

JQ~0,k2!5 i ~0,k2!S lT~0,k2!1
jk1

2u1
2

4 D . ~65!

For the standard stateJQx(k2,0)50.1241i and JQx(0,k2)
50.1234i and the temperature harmonics areT(k2,0)
50.0266 andT(0,k2)50.0277. This gives a second inde
pendent equation involvingl andj, that is,

l10.31j511.3. ~66!

Combining these two equations, we get the following es
mates for the two transport coefficientsl511.9 andj521.9.
The only other numerical estimate forj is a very recent
result obtained by Todd and Evans@13# for Poiseuille flow,
which givesj'70. The result obtained here is for 4RF g
ometry and a particulark vector, and external field strength
so a meaningful comparison of these two results is not p
sible.

The thermal conductivityl can also be calculated in
more usual nonequilibrium way. That is, we can plotl
1jk1

2u1
2/4T(0,k2) as a function of the external field ampl

tudeF1 . As F1 approaches zero, the second term becom
negligible and we recover the thermal conductivity. Figure
shows a plot of the thermal conductivity as a function of t
external field amplitude. Hansen and Evans@16# calculate the
k→0 value of the thermal conductivity for the same syste
to be of the order of 12.560.6. The results obtained her
both from Eqs.~63! and ~66! and from Fig. 8 are consisten
with the value obtained by Hansen and Evans. The nonlin
effects appear to increase with decreasingk1 .

e
FIG. 8. Thermal conductivities for systems at differentk vectors

calculated from Eq.~64!. The arrow represents the zero-wav
vector limit for the thermal conductivity, calculated by Hansen a
Evans@16#.
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VIII. CONCLUSION

The numerical results for the conservation equations sh
that the hydrodynamic description of a fluid of 896 partic
in periodic boundary conditions is completely consiste
with the molecular-dynamics results. In all cases the pre
tions of the conservation equations agreed with the sim
tion results. This tests the applicability of hydrodynamics
small systems and verifies the microscopic representat
for the pressure tensor and heat flux vector for a system
a nontrivial streaming velocity. The numerical results for t
constitutive equations for particular values of thek vector
give the effective values of the transport coefficients, bu
other cases, such as the nonfundamentalk vectors for shear
viscosity, they predict the absence of particular harmo
responses. Often in these cases, these are limitations o
constitutive equation as the numerical result show the e
tence of a nonzero response.

The value of the viscosity at nonzerok vector is not much
different from the zero-k-vector result ofh53.80. As this
method is specific to the particular flow pattern and yie
results for a discrete set ofk vectors, a much more detaile
study would be necessary to thoroughly explore thek depen-
dence of the viscosity. The combined use of the constitu
equation for the heat flux, at two differentk vectors, allows
independent estimates of both the usual thermal conduct
and also the transport coefficientj. Our results suggest tha
for 4RF the thermal conductivity is aboutl511.9 and the
coefficientj>22. The accuracy of the thermal conductivi
is probably better than 10%, with the largest source of e
being the extrapolation to zerok. However, forj the error
-

-

w

t
c-
a-

ns
th

n

ic
the
s-

s

e

ty

r

bars would be much larger, possibly as much as 100%, e
casting doubt on the sign of this term.

The observation of a heat flux component of the sa
vector character as the streaming velocity but in the oppo
direction is somewhat surprising. The are a number of p
sible reasons for this and further work would be required
determine the physical origin of this effect. There are a nu
ber of possible causes. The thermostating mechanism us
this work contains an approximation@Eq. ~19!# and although
the error associated with that approximation seems smal~at
most 5% error in the value ofa!, it may be large enough to
account for the extra heat flux~;0.03!. Alternatively, the
extra heat flux may be associated with small perturbation
the streaming velocity that were ignored by considering
streaming velocity to have the same functional form as
driving force. If this is the case, then adding higher-ord
terms to the streaming velocity may remove the effect. Al
it has been noted that the nonlinear hydrodynamic instab
associated with the nonequilibrium thermal conductivity
gorithm is the appearance of a solitonlike shock wave tr
eling at supersonic speed whose normal is parallel the
plied field @25#. It is certainly possible that a simila
nonlinear instability could perturb the streaming velocity a
produce an extra heat flux contribution.
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