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Microscopic study of steady convective flow in periodic systems
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We derive a consistent microscopic formulation that connects macroscopic hydrodynamic quantities with the
microscopic positions and velocities of the constituent atoms. Introducing a local fluid streaming velocity,
which is applied microscopically to separate the thermal and streaming motion of each particle, we obtain the
microscopic representations for the pressure tensor and heat flux vector. The formalism is applied to a par-
ticular two-dimensional flow pattern termed four-roller flow. Molecular-dynamics results obtained indicate that
the conservation equations are consistent at the microscopic level for four-roller flow. Molecular-dynamics
results for the effective transport coefficients, shear viscosity, thermal conductivity, and a cross coéféitient
particular values of thek vector are obtained by analyzing the constitutive equations separately.
[S1063-651%97)05607-9

PACS numbep): 47.10+g, 05.20-y, 51.20+d

[. INTRODUCTION the bulk flow pattern. Our intention in defining the local
streaming velocityu(r,t) is to use it on the microscopic
The hydrodynamical conservation equatidt$ describe  length scale to identify the streaming component of the labo-
the redistribution of the conserved quantities, such as masgatory velocity of each particle. This means that the observed
momentum, and energy, within a fluid. In the hydrodynamiclaboratory velocityr;(t) of each atom has two components: a
description the fundamental unit is the volume element thatocal streaming velocity at the position of the particle
must be large compared to atomic length scales, but smalli(r;,t) and a random or thermal velocity(t). Thus the
enough such that bulk properties do not change within ataboratory velocity of particlé is r;(t)=v;(t)+u(r;,t). To
element. In this description we can define the value of aletermine the streaming velocityr,t) some type of aver-
conserved quantity, or its flux, at an arbitrary positroand  aging is required, either implicit or explicit in time or space.
time t. The velocity of a fluid element at a given point in The temperature arises naturally in the microscopic picture
time and space is called the local streaming velocitythrough the random or thermal component of the velocities
u(r,t). For steady flows, the streaming velocity at each pointv;(t).
in space is independent of time. The conservation equations In the development of the microscopic approach we begin
are closed by the constitutive equations, Newton’s law oty considering the densities of the macroscopically con-
viscosity, and Fourier's law of heat conduction. The result-served quantities, that is, the mass, momentum and energy,
ing Navier-Stokes equations are partial differential equationsis introduced by Irving and Kirkwoof2]. In the original
that need to be solved for a given set of boundary conditiondrving-Kirkwood procedure the mass density was defined to
Here our aim is to connect the hydrodynamic and micro-be the ensemble average of an instantaneous mass density.
scopic descriptions for a particular class of flow problemsHere we return to the concept of an instantaneous mass den-
but rather than obtaining the Navier-Stokes equation, wesity defined for each ensemble membier set of micro-
keep the exact conservation equations separate from the ageopic initial conditions From a computational point of
proximate constitutive equations and explore their propertiesiew it is often more natural to calculate the system proper-
independently. ties from a single long system trajectory rather than to con-
In the macroscopic formulation, the fluid element is thestruct the ensemble average. Similarly, the momentum and
fundamental unit. The major problem in connecting the macenergy densities can be defined at each instant along a phase-
roscopic and microscopic descriptions is developing a physispace trajectory. Substituting the microscopic representations
cally meaningful definition of the streaming velocity; this is for the densities of conserved quantities into the conservation
connected with the identification and separation of macroequations gives microscopic representations for the pressure
scopic and microscopic length scales. In the microscopic deensor and the heat flux vector, which can be used in
scription we have the positions and velocities of all the at-molecular-dynamics experiments.
oms. This description contains much more information than The numerical values of the transport coefficients con-
the macroscopic description simply because so many mor&ined in the constitutive equations are considered as input
variables are involved. In the microscopic picture, a given setjuantities in the macroscopic hydrodynamic treatment. Mi-
of initial conditions and the equations of motion with a par- croscopic methods are required to determine the numerical
ticular interaction potential give the position and velocity of values of the transport coefficients from the intrinsic proper-
each atom at each point in time. Often the fluid is subject tdies of the fluid. Such methods include, for example, the
an external field or boundary condition that induces a speGreen-Kubo method3] using equilibrium fluctuations or
cific bulk flow pattern. This may be equivalent to a hydro- nonequilibrium method$§4,5] such as thesLLoD algorithm
dynamic boundary condition. Macroscopically, the localfor shear viscosity4] and those of Evani$] and Gillan and
streaming velocity of each of the fluid elements determine®ixon [7] for thermal conductivity. The Green-Kubo meth-
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ods can calculate transport coefficients at nonzewector, ration between streaming and thermal motion by choosing a

but usually the nonequilibrium methods yield only zero-fixed number of harmonics effectively introduces a spatial

k-vector transport coefficients. However, an advantage of theverage. A different class of allowed streaming velocities is

nonequilibrium methods is that they often model the real@ssociated with a two-dimensionidvector disturbance and

physical process and can therefore give information aboute refer to the first of these as four-roller flddRP [20], so

the nonlinear behavior of a fluid. named for the four counterrotating vortices in each simula-
One of the earliest nonequilibrium methods to calculateion cell. In this paper we investigate thevector depen-

the shear viscosity was to use a sinusoidal transverse for@gnce of the transport coefficients for 4RF.

(STH to drive a streaming velocity of the same functional

form [8]. Knowing the ratio of the amplitudes of the stream- Il. MACROSCOPIC HYDRODYNAMICS

ing velocity and the force, the shear viscosity can be calcu- Hvdrodvnamics is based ubon a set of exact equations

lated from the Navier-Stokes equation. This method calcu- y y IcS 1S up xact equatl

lates the k-vector-dependent shear viscosity that onlythat relate the fluxes of the conser\_/ed quantities, namely.,

, : T - d energy, to various gradients. The deri-

approaches the Navier-Stokes viscosity in the limit agnass, momentum, an 9y, 9

k— 0. This method was later exploited by Evdi®g to ex- vgﬂon we give 1s appropriate for both tWO.' and th'ree-_
e : . dimensional systems. The standard conservation equations in

Y q

plicitly calculate thek- vector-dependent shear viscosity and Euleri

! . . . : ulerian form are

investigate its behavior as a function of both keector and

the amplitude of the driving force. Of particular interest was P

the functional dependence of the viscosity uponkhesctor — p(r,t)==V-[p(r,t)u(r,t)], @

and the implications of this for the convergence of Burnett at

expansions in hydrodynamidd0]. Recently, calculations 5

have been performed using the STF methbd] and a dif- 7 _v.

ferent heat ?qu mode discgvered. This mode is a heat flux dt [p(r.u(r O]=V-Lp(r.hulr.Hu(r.t +Br.b]

vector contribution proportional to the gradient of the square

of the strain rate tensor. This mode leads to a heat flux in the

absence of a temperature gradient and a transport coefficient

& In planar Roiseuille ﬂOV\[lZ] this heat ﬂUX mode Intro- ﬁ [p(r,t)e(r,t)]ZV~[p(r,t)e(r,t)u(r,t)+JQ(r,t)

duces a term in the temperature profile that is quadratic in the ot

coordinate, as opposed to the standard temperature profile

that is purely queaetic in the coordinafd 3]. Dgspite thiz R u(r O]+ u(r - Fr,

change in the temperature profile, the heat flux remains un- €©)]

changed. Todd and co-workers have recently studied planar

Poiseuille flow using a sixth-order polynomial fit to the which relate the mass densifpy(r,t), streaming velocity

streaming velocity when calculating the pressure tefis¢f  u(r,t), and energy densitg(r,t)e(r,t) to the pressure ten-

and a quadratic it for the heat flux vecfd5]. For the Evans sor P(r,t) and heat flux vectodo(r,t). HereF*{(r,t) is an

method of calculating the thermal conductivi§] there has external force densitfforce per unit volumgthat couples to

been considerable work dof#6] investigating the presence each fluid element.

of solitonlike waves of energyor enthalpy propagating It is natural to separate the energy dengify,t)u(r,t)

through the fluid at supersonic speeds. More recently, ther@to two distinct terms: a convective energy density

have been a number of numerical studies of coupled trangp(r,t)u(r,t)? and an internal energy density

port processes in nonequilibrium situations. These methodg(r.t)U(r,t), where

have been used to calculate the thermal conductivity of a

weakly shearing Lennard-Jones flUi#i7]. Evans[18] and p(r.ve(r,t)=3p(r,Hur,H)’+p(r,HU(r,t). (4

Daivis and Evan$19] have also calculated the thermal con- o , o i

ductivity for strongly shearing fluids subjected to a weakSubstituting this equation into E) and using the mass and

temperature gradient. momentum conservatllor21 eqluazltlons and the vector identities
In most previous nonequilibrium molecular-dynamics Y-[V - (puu)]—V-(puzu?)=3uv.-(pu) and V-(P-u)

studies the streaming velocity is equal either to zero or tg=P':Vu+u-(V-P) gives the internal energy equation

some known functional forngsuch as the linear streaming

vel_ocity profile in planar Couette flowThe STF methpd and ﬁ [p(r,HU(r,H)]=—V-[p(r,HU(r,Hu(r,t)+Jg(r,0)]

Poiseuille flow are two methods where the streaming veloc- Jt

ity contains free parametefsither the amplitude or the func-

tional form). For the STF method the fundamenrkatector is

only one of the possible disturbances that is consistent witgmd the streaming kinetic-energy equation

the periodic boundary conditions and indeed any higher har-

monic of the sinusoidal force can also be excited. The ques-

tion that arises is how many harmonics do we consider to be r [Lp(r,tu(r,t)?]==V-[3p(r,H)u(r,t)?u(r,t)]

part of the streaming velocity. Clearly all the harmonics can-

not be included as that would lead to the whole of each —u(r,t)-[V-P(r,0)]

particle’s velocity being considered as the streaming velocity ’ =

and hence there is no thermal component. Making the sepa- +u(r,t)-F&Y(r,1). (6)

+F(r,1), (2

—P(r,t)":Vu(r,t) (5)
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Notice that there is no external force density term in the P(r)=—2n(Vuo(r)S—[ gV -u(r)—p)l, (12)
equation for the internal energy. In the macroscopic picture B - -
the only effect of an external field is to accelerate fluid ele-where 7 is the shear viscosityyg is the bulk viscosity, and
ments, increasing the streaming kinetic energy; thus, in ret is the identity matrix. For divergence-free flow the sym-
moving the streaming components to obtain the internal enmetric traceless part of the strain rate tensor reduces to
ergy, the direct effect of the external field is removed. 0 1 T

It is more convenient to consider the Fourier transforms [Vu(r)]°=2{Vu(r)+[Vu(r)]'}.
of the conserved quantities and to write the conservatioq_he constitutive relation for the heat flux vector is
equations as a function & We define the Fourier transform

of an arbitrary real tensorial functioi(r) to be Jo(n)= —>\VT(r)—§V{[2°(r)]5:[2°(r)]5}, (13)
_ T Kot where \ is the thermal conductivity. These two equations
T(k) L? fo dxfo dy T(ne™". @) eliminate the pressure tensor and heat flux vector by defining

the transport coefficients for viscosity and thermal conduc-
For systems that we will consider, the periodic boundantivity. The second term in the constitutive equation for the
conditions used in computer simulations imply that there is &ieat flux vector is that proposed by Baranyai, Evans and
discrete spectrum of allowekl vectors[k=(2x/L)(n,m), Daivis[11] and indicates that a heat current can be generated
wheren andm are integers andl is the length of the simu- in the absence of a temperature gradient. This introduces an
lation cell]. The original functionT (r) can be reconstructed extra transport coefficier§, which is related to the gradient
using of the square of the strain rate tensor.
Fourier transforming the constitutive equations leads to
iker expressions for the pressure tensor and heat flux where only
I(r)= ; T(k)e : ®  terms of the samk vector are coupled by the standard trans-
port coefficients as

If T(r) is a real function then the Fourier coefficient

Re(T(K)} is even ink and IM{T(K)} is odd. Using the defini- B(k)=inlkuk) +u(k)k]+p(k)L, (14
tion of the Fourier transform and its inverse, the Kronecker £
delta and the delta function are given by Jo(K)=ikAT(k)—ik 5 > {[(k=k")-u(k")]
k!
1 o
Pkt =12 f dr e 1O, X[k’ -u(k—k")]+[(k=k')-K']
X[u(k")-u(k—k")1}. (15
1 . ,
o(r—r')= 2 ; gtk (r=r. The transport coefficieng introduces coupling between dif-

ferentk vector components of the streaming velocity and the

In a steadv state. in an Eulerian frame each of the hvdrod heat flux. This arises from the double contraction of the
. y state, : S y Yraceless symmetric velocity gradient tensor. In this paper we
namic densities lose their explicit time dependence, so th

S L ) Eonsider the transport coefficients as constants and thus an
partial time denvatwe_s on the Ieft-_hand SideHS) Of Eqs._ explicit k dependence is not included. Thus the effective
(1)~(3) are zero. Fourier transforming these equations glVe?ransport coefficient at one value lofmay differ from that at
another. A more general constitutive relation could be ob-
K- E p(k—k")u(k’)=0, (99  tained by allowingn to bek dependent. This would imply a

K’ convolution in ther-space constitutive equation, which then
includes nonlocal effects.

"% kE plk=kDu(k™—k’)-k'u(k’) lll. MICROSCOPIC CONNECTIONS

. A. Mass conservation
=ik-P(k)+F*{(k), (10
To make the connection between hydrodynamics and mi-
croscopic classical mechanics we need definitions of the con-
—iZ 2 p(k—k"yu(k”—k")-k"U(k") served densities. In the spirit of Irving and Kirkwof2] we
K"k consider a single phase-space trajectory evolving in time and
define the mass density at timg4]. The definition of the
il T (e 1! L mass density on the macroscopic scale for a fluid element is
Ik JQ(kH%‘ B Ritk=kulk=k"). (1) simply the mass of the element divided by its volume. In the
guasimicroscopic picture we imagine that the mass of the
Notice that the discrete convolutions imply a particular cou-element is the number of atoms it contains multiplied by the
pling between the Fourier coefficients at differénvectors. mass of an atom. However, in the microscopic picture the
These arise from the nonlinear terms in the conservatiomass density at pointis zero if there is no particle at posi-
equations. To close these equations we use the constitutite®n r and infinite if there is a particle at In this way we
equations. The constitutive relation for the pressure tensor igrite the mass density as
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p(r0)=2 ma(r—ri(1). (16) 2, M=)
le r
u(r)=
Integrating this expression over a fluid element would then > mis(r—r,), (20)
give the number of atoms times the mass. The LHS is a ieE(r)

macroscopic hydrodynamic quantity and the right-hand side

(RHS) is its microscopic representation. It is important to Where the summation is over particles within fluid element
realize that this definition is consistent with the Eulerian pic-E(r), but this form foru(r) will change discontinuously as
ture in that positiorr is fixed in space and the only time particles enter or leave the fluid element. The approach that
dependence on the RHS is the time dependence (b, we will adopt in the formal derivations that follow is to
which arises through the motion of the particles. Substitutinglerive the microscopic representations using the full particle
this mass density into the LHS of the mass conservatioyelocities and then make the separation into thermal and

equation(1), using the identity streaming components.
J 5 — J S B. Momentum conservation
ar, (r—ryp= o (r—ry,

Substituting the microscopic representation for the mo-
and comparing it with the RHS of Eql), we see that the mentum densityEq. (17)] into the RHS of the momentum

instantaneous momentum density is conservation equatiof®), we find that
_ d d .
p(r,t)u(l’,t)ZJ(I‘,t):Z m;r; 8(r—r;). (17 p [p(r,t)u(r,t)]=—5~§i: mirir 8(r—r;)
I
There is no instantaneous representation for the streaming +2 mif, 8(r—r,). 21)
|

velocity u(r,t) at the particle level that can be constructed

from the instantaneous representations fofr,t) and

J(r,t). Taking the ratial(r,t)/p(r,t) would give the stream- At this point we use the equations of motion to writer;
ing \_/elocity to be t_he particle velocity at _the position of eaqh_z Fi+Fe—am[f;—u(r;)], where F® denotes the external
particle and undefined elsewhere. This is not a useful definicyce on particld and the last term is the isokinetic thermo-

tion of the streami.ng.velocity. Any realistic representgtilonstat[df]' For the external component of the force alone, con-
for u(r,t) necessarily involves some form of coarse graininggjger 3 small volume elemeii(r) such that the force ex-
in either space or time. Once a streaming velocity has beeg iaq on each particle is equal: then

determined(by whatever meanswe can divide the labora-
tory velocity of each particle into a thermal part and a

streaming parti(r;), that is, > Fe(r)a(r—r)=F(r,t)>, 8(r—r)=F%r,Hn(r,t)
I I
ri=vi+u(r;). _Fer ), (22

Using this representation, we can write the instantaneous
momentum density as wheren(r,t) is the number density;é(r,t) is the force on

the volume element, anB®{(r,t) is the force density that

Jr,H)=> mvis(r—r)+p(r,Hu(r,t) (18  appears in macroscopic conservation equations. When the
|

thermostating term is substituted into EQ1) it gives zero

) . o ) contribution from Eq.(19) (on the volume element length
and we see immediately, from the definitionJgf,t) in Eq. scale.

(17), that the thermal velocities do not contribute to the mo- | the remainder of this treatment we will assume that the

mentum current as internal forces arise from pairwise interactigftise introduc-
tion of three-body forces is possible, but more complicated
2 mv;8(r—r;)=0. (190  For pair interactions
I
A key step in all the microscopic derivations is that (f) is > FS(r—r)=>, Fijo(r—rp)
i i

a simple function ofr (which is not an operat@r then

f(r)o(r—r))=f(r;)é(r—r;). There are some subtle points

with regard to the interpretation of E(L8). Both J(r,t) and =1 Fijlo(r—rp)—o(r—rj]]|,
p(r,t)u(r,t) are macroscopic quantities, defined for a fluid Ll

element, and are numerically equal. This implies that at the

fluid element level Eq(19) is equal to zero. Clearly this whereF;; is the force on particlé due to particlg. Treating
separation between thermal and streaming parts is physicalthe & function as an analytic function, we may expad
correct. We can also interpret this equation as a condition-r;) in a Taylor series about(r—r;). This gives the
that the streaming velocity of a fluid element must satisfy.O;;[r] operator that can be written either as an operator on
Thus functions ofr or as an operator on functions qf,
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S(r—rt)— 5(r—r,—)=%'rijoij[r]é(r—ri) p(r,t)e(r,u(r,t)+Jo(r,t) + P(r,t) - u(r,t)

5 ) =§i) eififs(r_ri)_%%: rijFij i
=E'r”—JO d\ &(r—ri—Ary),

1
29 xfo dN S(r—ri—Arj)). (26)

The microscopic external field energpurceterm matches
wherer;;=r;—r;. TheO;; operator is a cumbersome infinite that in the macroscopic conservation equatfosing Eq.
seried 15], but the second equality gives a much more useful22)] but the thermostatinkterm does notbecause the ther-
integral representatiof21]. Both of these forms allow us to Mostating mechanism was not explicitly considered in the
factor out the derivative with respect tothat we need to Mmacroscopic treatmentWe now divide the velocity of each

match the hydrodynamic equati¢®). The momentum con- Particle into thermal and streaming parts and find that the
servation equation then gives streaming components on the RHS cancel with the streaming

term p(r,t)e(r,t)u(r,t) on the LHS. Using the microscopic
form for the pressure tensor obtained previously in &4),
p(r,0u(r,HU(r ) +P(r,t) we find that the heat flux vector can be written as

=> mirrs(r—r)—3> rijFijfld)\ﬁ(r—ri—)\r”—)_ JQ(r,t)=2i {eivi—mvvi-u(ri)}o(r—ry)
] ] 0

=52 rFy[vitu(r) —u(n)]
We now divide the velocity of each particle into thermal and b
streaming parts and we find that the streaming component on 1
the RHS is equal to the streaming term on the LHS, that is, XJ dN S(r—ri—Arj).
p(r)u(r)u(r). Therefore, we can identify the microscopic rep- 0
resentation for the local pressure tensor at posttian time

{ as However, there are still kinetic streaming components re-

maining ine;. Removing these by defining the internal en-
ergy of particlei to beU;=3mv>+33,¢;; , the final result
for the heat flux vector is then
E(r,t)=2 m;V;V; 8(r—r;)
| Jo(ri) =2 U d(r=rp) =32 13;Fy-[vi+u(ry)

-1 rijF”fldw(r—ri—mij). (24) L
H 0 —u(r)]J dN S(r—ri—A\rjj). (27)
0

This result is equivalent to but substantially simpler than the
infinite series representation obtained previousl|. As
To obtain the microscopic representation for the heat fluxegs.(24) and(27) are the exact representations for the local
vectorJo(r,t), we define the instantaneous microscopic enpressure tensor and heat flux vector in an arbitrary geometry,
ergy density to be they reduce to method of planes results for Poiseuille flow.
In transforming tok space it is sufficient to Fourier trans-
form the microscopic representations for the pressure tensor

C. Energy conservation

N

pe(r,t)=2,1 &o(r—ri(1), (29) and the heat flux vector. The microscopic representation for

the k-dependent pressure tensor in two dimensions is given
by

where e =3m;r?+33;¢(r;;) is the energy of particle. 1N N

There is an |mpI|C|§ assumption in thls_ d_efmmon of the en- P(k,t)= (2 mivivielk-ri_%Z rijFijGij(k))v

ergy density. That is, that for each pair interaction, half the L \i=1 ]

potential interaction energy is assigned to each of the par- (28

ticles. For homogeneous, isotropic systems this assumption

seems plausible, but in other circumstances, far from equivhere

librium, little is known of the validity of this assumption. 1

Substituting the microscopic representation of the energy Gij(k):f dr e”“f d\ 8(r—ri—\rj))

density into the macroscopic energy conservation equation 0

(3), differentiating the energy of particieand theé function e aiker;

e e

with respect to time, combining these two terms, and using = -
the integral representation of ti@; operator, this becomes ik-rj
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In the limit ask-r;—0, G;;(k)—€'*". As the forceF; N

=r;j¢'(rj;), it follows that the pressure tensor is symmetric. E v [Fi+F&(r))]
Similarly, thek-space representation for the heat flux vector =1
is the Fourier transform of the-space representation equa- N )
tion (28). The microscopic form for the heat flux vector is Z’l m;V;

a=

(33

5 or 1 It is important to realize that this is an assumption that leads
Jatk,t)L _Ei Ujvie '_EZ rij Fij - viGij (k) to an approximate value fax, thus exact temperature con-
! servation is not achieved. However, for the standard planar
1d k. (F 4 Ar) Couette flow geometry this approximation is equivalent to
- fo A e RN —u(r) ] the assumption that the kinetic component of the shear stress
P)'fy is equal to zero. For the same soft-sphere fluid as that
(290 considered here, at a reduced strain rate of 1.0, the kinetic
component of the shear stress is 5% of the total shear stress,
The heat flux vector depends on the explicit form of thehence we expect this approximation to be reasonable. For a
streaming velocityu(r) and its integral along the; vector.  molecular-dynamics simulation using E®1) as the defini-
Clearly, if the streaming term is constant, the integral term idion of the temperature, regular velocity scaling during the
zero. simulation maintains the correct temperature, so the approxi-
mation in Eq.(32) leads only to a small drift in the tempera-
ture between each velocity scaling.
IV. THE ALGORITHM FOR FOUR-ROLLER FLOW The simplest two-dimensional nonzero, nonplanar distur-

Molecular-dynamics simulations allow the calculation of bance that is consistent with periodic boundary conditions is
all the k-vector components of the densities and fluxes in4RF. The microscopic 4RF external field is defined as
cquatons. This snables a sysiematic sty of e vaidiy of (1) ~Fa(—sillxcosoy) cotkxsinkay),
the application of hydrodynamics to small periodic systems
and the usefulness of particular constitutive relations. Hergynere k,=2#n/L and L is the length of the molecular-
we consider the application of the microscopic formulationgynamics cellwhich is assumed to be squar@he ampli-

to a particular two-dimensional flow field, four roller flow. {de of the forceF, is an input parameter. The expected
The algorithm for 4RF20] begins with the usual Newtonian response to this field is a flow of the same functional form,
equations of motion, to which is added an external force termp 4 js,

Fé(r;). Because this external force does work on the system

a thermostating mechanism that remodesaj energy is in- u(r)=uy(—sin(k;x)cogkyy),cogk;x)sin(kyy)), (35
cluded in order to obtain a stationary state. We use a Gauss-
ian thermostat and the equations of motion are where the amplitude is an observable. However, it is also

possible that for sufficiently large fields higher harmonics

(30) may be generated in the flow pattern. As the microscopic
external force=%(r) and the streaming velocity(r) have the
same vector symmetry, the Fourier coefficients are

mifi=Fi+Fe(ri)—amiVi .

For the purposes of this simulation, we use tperational

definition of the temperatur€, defined in terms of thermal . iF,
velocitiesv; as Fi(xky, =k == (71,21) (36)
and
NkT=3> mv2 (32)
: iu
u(ikl,ikl)=Tl(Il,i1). (37)

Using Gauss'’s principle of least constraji®2] to fix the
instantaneous value a@fyields the thermostating term in Eq. The £ signs in thex components correspond to each other
(30). The value of the multipliere can be calculated by and the+ signs in they components correspond to each
differentiating Eq.(31) and substituting Eq(30). This form,  other separately. The Fourier coefficients of macroscopic
however, contains a term involving the time derivative of theforce densityF®{(r) are the same as those in E86), but
local fluid velocityu(r;). If we assume that this whole term with an extra factor of the number density
is zero, that is, As we have stressed, the most important connection be-
tween statistical mechanics and hydrodynamics is the identi-
fication of the streaming velocity(r,t). In a computer
E mv;-u(r;)=0, (32 simulation it is easy to calculate the Fourier coefficients
: p(k,t) and J(k,t) to arbitrary order ink. Either p(r,t) or
J(r,t) can then be reconstructed. Limiting the largestec-
then the following value of the thermostating multiplier is tor in the reconstruction sets a limit on the minimum length
obtained: scale over whiclp(r,t) or J(r,t) can vary, thus effectively



482 DAVID R. J. MONAGHAN AND GARY P. MORRISS 56

P Srar—— L | [ e ) the Fourier coefficients of the momentum density and mass
77/»—”‘:t R4 j:v-—k\\'\ 7 density each five time steps and that local velocity is then
I 77‘;':: \ 7 :.‘_‘:\\‘\ used to separate the random and streaming components of
{l 20 d 4 i j b o oo 1’,‘\ the laboratory velocity of each particle. The results for all
A= Jd 1 Vo, r } density harmonics were calculated for a system wkth
\\““;':;‘//5 Jt\\.\\. 2L =0.2018 and~,=0.25. We refer to this state as our standard
N e v Shov—o e b state in all that follows. Results were also obtained at other
o o - oo s —~ o0 values ofk,; for a range of external field amplitudds; .
G T oA qpbaeree e & These results illustrate various trends and are presented
coN\V e hicall
d dvan .\\;‘\\ )) ; RN Y The response of the system to 4RF is measured by calcu-
i :: ° 1 { fe° ;'}11 lating the Fourier harmonics for all system properties for
l&\w-:,'. / 2 \ :\:—V(JJ k=(Kn.K,), where—4<=m=4 and—4<n=4. The simu-
\\\s._.,j, r ik Q.Q.\._.—//J l lation results are then substituted in the conservation equa-
V0008 P P §[Q N A O—b—T T & tions and constitutive relations separately, thus both sides of
000009909 ofcereooeoe the conservation equations can be calculated and compared

_ _ _ giving a direct test of the applicability of the hydrodynamic
FIG. 1. Vector field velocity profile for 4RF. The flow pattern description. The constitutive relations are used to obtain val-
consists of four counterrotating vortices arranged in a simulationyes of the transport coefficients for the model fluid, which

cell. are effective in the sense that they apply to 4RF at a particu-
lar k value.
introducing spatial averaging. Definingr,t) as the ratio of
these reconstructed and spatially averaged,t) and A. Mass conservation
J(r,t) gives a well-defined smooth representation for . .
u(r,b), The only nonzero responses in the mass density were
p(k2,0)=p(0k;)=—0.0016 and p(kz.kz)=p(kz,—kz)
Kimax =—0.0010. As these are nearly three orders of magnitude
> J(k, e ikr smaller than the mean density, this suggests that the fluid is
k highly incompressible. At larger values of the external field
u(r =g 7 (38) and forN=3584 systems, larger harmonics were generated,
; p(k,t)ye kT although at the most the magnitude of these was erl§o.

This is consistent with the incompressibility assumption used
frequently in macroscopic hydrodynamics. Here we can use

wherekp,, is the upper limit of the&-space summation. Any e ‘numerically observed incompressibility to simplify the
finite truncation of the&k-vector sum in the numerator and the yefinition of the streaming velocity in Eq38) as the de-

denominator introduces a sp.atial coarse graining and wilhominator simply reduces to the average dengity
lead to a smooth representation wf). This could equally
well be obtained through temporal coarse graining, though
this particular avenue was not examined in this work. The
Fourier transform of the field allows free movement to the The Fourier coefficients of the streaming velocity have
hydrodynamic description developed previously and is conbeen calculated at our standard state and the results show that
sistent with the periodic boundary conditions. In order tothe only significant coefficients are those of the fundamental
define a hydrodynamic local streaming velocity it is assumedesponse. All other coefficients were at least two orders of
that only the fundamentat vector of 4RF is excited. This magnitude smaller. As expected, the real parts of the coeffi-
enables the field to generate the position-dependent strear@ients were zero, but the imaginary parts were nonzero; in

B. Momentum conservation

ing velocity profile shown in Fig. 1. particular the 4RF fundamentals giv& (k;,Kq)=J.(Kq,
- kl) = - ‘]y(kl 'kl) = Jy(kl y kl) =-—0.211+1. This con-
V. SIMULATION RESULTS firms the assumptiofmade previouslythat at this value of

the external field amplitud&,=0.25 only the fundamental

Molecular-dynamics calculations were performed formode of the streaming velocity is excited. Using E2¥), we
two-dimensional systems of 224, 896, 504, and 3584 softfind thatu;=0.9136. This, combined with the observed in-
disk particles of diameter [23]. The soft-disk potential compressibility, leads to a number of simplifications in the
o(r)=¢[(a/r)?—(1/1.5)*?] for r<1.50 was used with analysis that follows. In particular, the numerator of E2f)
¢(r) exactly equal to zero for>1.50. The force calcula- in the definition of the streaming velocity is assumed to con-
tions were implemented in the program using a cell codeain only the fundamenta& vectors of 4RF.
routine [24]. The system was fixed at a temperatii® ¢ Figure 2 shows the relationship between the observed am-
=1 and an average density pt->=0.9238. A fourth-order plitude of the streaming velocity; =4Jy(Ky K1)/ p (choos-
Gear predictor-corrector algorithm was used to integrate théng the y component only because it is positivand the
equations of motion, with a time step in the range 0.002magnitude of the applied fielf; at different values ok; .
<At=<0.004. The fundamentélvector is determined by the Apparently there is an approximately linear relationship be-
system size s&;=2m/pa?/N, whereN is the number of tween the amplitude of the streaming velocity and the
particles. The local streaming velocity was calculated fromexternal fieldF, and an increase in; with decreasing; .
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FIG. 3. Graph of the results from the momentum conservation

dence of the streaming velocity. As the valuekoflecreases, the equation fork=(k,,k,) at three differentk vectors. The points

physical size of each roller increases, allowing a larger Streamingepresent the simulation data accurate to about 2%. The dashed
velocity amplitude. The error is smaller than the size of the sym-es are the curves predicted by E¢39) and (40).

bols.

1. Case 1: k=(kq,%ky)

As u(k) is only nonzero fok=(=*k;,*k;), the LHS of
Eq. (10) is equal to zero. For the two choicks- (k, ,k;) and
k=(ky,—ky), the results can be written as

nkF,
P*(ky, = ky) £ PY*(ky, £ky) = K. (39
1
nk,
PyX( kl y + kl) + Pyy( kl y + kl) =F—, (40)

4k

Using the fact that the microscopic pressure tenEgr (24)]
is symmetric gives

nF,

P*(ky, = ky) —PY(ky, k)= 2_k1

(41)

The numerical results for our standard state are in excellent
agreement with Eqs(39)—(41). Further, the numerical re-

sults strongly suggest th&Y(k) =PY*(k)=0 for all values
of k and that thereforeP**(ky,*ky)=—PYY(ky,*k;)
=nF,/4k,. For k=(ks,ky), P*=0.286 and PYY=

—0.283, which gives the LHS equal to 0.569, while the RHS
is equal to 0.572. The same result also follows if we assume

mechanical stability on the so that
P*(kq,kq1)+PYY(kq,k1)=0.

In Figure 3 we present the results f&**(k,,k;) as a
function of external force amplitude; for various values of

k,. The lines are the predictions from E¢89) and (40).

length scale,

2. Case 2: k=(ky,xky)

The LHS of Eq.(10) is equal to zero and there is no

external field term, so this gives

P*(ky, = ky) £ PYX(ky, k) =0, (42)

Pyx( k2, + kz)i Pyy( k2, + kz):O (43)

The numerical results agree with these equations, but they
also suggest that each individual term is equal to zero.

3. Case 3: k=(k,,0) and k=(0,k,)

For thesek vectors the LHS of Eq10) has terms that are
nonzero, but there is no external field term. Therefore, it can
be shown that

2
u
P (kp,0)=P¥(0ko) = 5", (44
10 E T E|
_ o  k=0.2690 ‘
F o k=02018 P
LE + Kk=0.1009 el 3
i A ]
0.1 ¢ E
Pk,0)  f ]
0.01 .
0.001 £ 4
0.05 0.1
F

FIG. 4. Graph of the momentum conservation results Kor
=(k,,0). From the symmetry of the system these results are iden-
tical to those folk=(0Kk,). Results for three differerit vectors are
presented. The points are the simulation values. The dashed lines
are the curves predicted by E@4). The error in the simulation
values was less than 2%.
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TABLE I. Fourier harmonics of the pressure tensor, heat flux vector, and internal energy that are required
for the energy conservation energy at the particular valuds aifnsidered.

k Jox Joy k pxx pyy U

(ky,k») 0.0259 0.0294 (ks ,ka) —0.0223  —0.0020  —0.0041

(ky, — ko) 0.0154  —0.0425 (k3,k1) 0.0020 0.0204 0.0032
(k;,—ks)  —0.0218 —0.0015 —0.0028

k U (kz, — k1) 0.0024 0.0216 0.0032

(Ky,kq) —0.0009 Ks.Ks) —0.0002 0.0000

(ky,—ky) 0.0000 ks,—ks)  —0.0007  —0.0003

P*(k,,00=PY(0k,)=0. (45

C. Energy conservation

The numerical results for our standard state are in excellent The energy conservation equation can be thought of as a
agreement with Eqs(44) and (45) as P**(k,,0)=0.0950, balance between internal enersfprageterms, viscous heat-
PYY(0k,) =0.0950, and the RHS is equal to 0.0964. Figure 4ing energy productiorterms, and the resulting heat current.
compares the numerical results f1*(k,,0) as a function of From the energy conservation equatidd) and, as before,
external field amplitudé-, with the predictions of Eq(44) using the numerically observed incompressibility and includ-
at different values ok,. The agreement is good, except ating only the 4RF fundamentals for the external field and
largerk values. streaming velocity, it can be shown that

pTul (LD {[k+(ky, —ky) JU[K+ (kg , —kg) ]—=[k=(kq, —ky)]
XULK=(kg, —ky) I} + pTul (1= 1) {[k+(kq, k) JULK+ (kg k) T=[k= (kg kg) JU[K= (kg kg) 1}
k
=ik-Jo(k)+ % {PP{k—(kq k) 1= PYTk—(kq,kq) ]+ POTk = (ky, —kq) ] = PPTk—(kq, —kq) I}

+ ulTkl {PTk+(ky, —ky) 1= PYTk+(ky, —kq) ]+ PPk + (kg ky) ] = PYTK+ (ky k) 1} (46)

In obtaining this equation we have assumed that the offFork=(k;,k;), the simulation resultéTable ) for the Fou-
diagonal terms in the pressure ten&d¥(k) andPY*(k) are  rier coefficients on the LHS giveU(k,,0)—U(0k,)

zero. We now consider different choices far =0.0384-0.0393= —0.0009 and the last term of the RHS
gives P*(k,,0) — PYY(k,,0) + P**(0,k,) — PY¥(0,k,)
1. Case 1: k= (ky,%=k,) = (0.0841-0.0950+ 0.0950-0.0844)= —0.0003. The nu-

merical results for our standard state suggest that each of
these terms is individually equal to zero. On symmetry
grounds the LHS of Eq46) can be expected to be zero. This
leaves the heat flux vector terms as the only nonzero contri-

For this value ok, due to the symmetry of the system we
expect thatP**(0,0)=P¥Y(0,0) and from Eqgs(42) and (43
that P(k,,k,) =0, so Eq.(46) reduces to

butions, so
PGS 1 (0~ U(0, 2 )}
4 “ o (Ky, = Ky) - [Jox(Ky, =ky) £doy(ky, =ky)]=0.  (48)
. Uskq
=i(ky,2ky) - Jo(ky, £ky) + ——= {P(k2,0) The standard state givedq(ky,k;)=(0.0346;~0.0340)

and Jo(ky,—k;)=(0.0369,0.0371) both of which satisfy
— PYY(k,,0) + P*(0,x ky) — PYY(0,%£ky)}. (47 Eq. (48) almost exactly.



2. Case 2: k=(ky,xky)
In this case, combining Eq41) with Eq. (46) gives

puy
Z (k1 +kg){U(ks, =ky) —U(ky, =Kk3)}

nu.F4
8

=i(ky, £Ka) - Jo(ka, ky) +
ukq . vy

+T{P (k1,*kg)—PYY(ky, *K3)

+P*(kg, k1) =P (k3, *kq)}

ukq .
+T{P (k3, = ks) —PY¥(k3,*k3)}. (49
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For our standard state the responses in many of the terms in FIG. 5. Graph of the internal energy conservation for

Eq. (49) are small, but probably not negligible.

Jox(k2,0). Results for the three differektvectors are shown. The

For k= (k,,k,), including the numerical results for all points are the values obtained from the simulation. A logarithmic
terms in Eq.(49), the standard state gives the LHS equal toscale is used on thg axis for ease of presentation. The agreement

0.0012 and the RHS equal to 0.0023. ket (k,,—k,), the

for larger values ok was within statistical error, although a signifi-

LHS is equal to 0.0010 and the RHS is equal to 0.0012. Thigant deviation occurred fdg; =0.1009.

agreement is impressively good. If, however, we ignore all

higher harmonics in Eq49), then

nuFy
8 L

(K2, £kp) - Jo(ka, £ kp) = — (50

for our standard state &t=(k,,k,) this gives the LHS equal
to 0.0223 and ak=(k,,—k5) this gives the LHS equal to

0.0234, while for both of these the RHS is equal to 0.0264
Clearly, including the higher harmonics in both the internal”
energy and the pressure reduces the discrepancy between th

LHS and the RHS dt=(k,,k,), from 0.0041 to 0.0011, and
for k=(k,,—k5), from 0.0030 to 0.0002.

3. Case 3: k=(k,,0) and k=(0,ky,)
For these two values &, Eq. (46), using Eq.(41), gives
puy
7 (2K U(ky ko) + U kg, —kp)]

+(kg—kp)[U (kg ky) +U(ks, —kp)T}

. nuFy uky o
:|(k2,0)'JQ(k2,0)+T+T{P (K3,kyq)

—PY(k3,ky) + P(k3, —kqy) = PY(ks, —kq)} (51)

and

P (2K [U Ky k) + UKy~ k) 1 (ks — ko) [U (g k)

+ U(kll_ ks)]}

nuF;  uky
4 a4

—PYY(kq,kg) + P*(ky, —kg) = PY(ky,—K3)}.

=i(0kz)-Jo(0ky) + {P**(kq,k3)

(52

If we assume that the LHSs of Eq&1) and (52) are both
zero, as the coefficientd (k;,*k;)=~0, and on the RHS of
each equation the coefficienB8*(ky, *ks)=PYY(ky, = k3)
=P*(ks, *ky)=P¥Y(ks,=k;)~0, then we obtain the
simple result that

inuFq
8k,

JQx(kZaO):\]Qy(kaZ): (53

For our standard state the numerical results giyg(k,,0)
Q.1241 andJq,(0k;)=0.1234, while the RHS is equal

to 0.1307. Taking into account the observed numerical val-
ues of all the Fourier coefficients in Eq51) gives
Jox(K2,0)=0.1250 and Eq.(52) givesJqg,(0k;)=0.1275.
Both of these more careful calculations improve the agree-
ment.

The balance equatiofb3) for the k=(2k;,0) gave good
results at higher values &f and lower values of the external
field F,. However, the appearance of higher-order responses
led to more significant inconsistencies than those observed
for momentum conservation. This suggests that heat transfer
is more complicated at larger fields or streaming velocity
amplitudes. There are also significant higher harmonics in
the heat flux vector, such a¥yy(k;,ks)=—0.0445 and
Joy(Kz,k;1)=0.0398. For the standard state dt;(ks), the
conservation equatiof¥6) is again accurately satisfied, but
at the same state point witk;=0.1009 the conservation
equation is not satisfied. Like the discrepancydi(k,,0) in
Fig. 5 at the same value &f, we believe this is due to the
neglect of higher harmonics in the streaming velocity, par-
ticularly at (kq,k3) and (ks,kq).

VI. SHEAR VISCOSITY
A. Case 1: k=(kq,*k;)

From the constitutive relation for the shear viscosity equa-
tion (14), it can be shown that must be one of the funda-
mentals for 4RF and that, for example, for (kq,kq),
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system achieves a steady state, then the average total internal
energy(U)=(Z;U;) will attain a steady value. Thus the en-

4 , number of particles and hence the size of the simulation cell
- —o— k,=0.2690 L. The largelL, the less granular the roller becomes and the
C — o -k=02018 lower the viscosity.
38 [ o N0 E— -k1=0.1009 The temperature of the system was fixed by the thermo-
26 | — ! stat term included explicitly in the equations of motion. If the

n(F,)

ﬁ
e

34 N © ergy flow into the system from the external field is on aver-
i N \ age equal to the energy removed by the thermostat. There-
32 F > — fore, the time derivative ofU) will be equal to zero. Using
i N \ + ] the assumption at E432), this gives
3 [ Yot
28 Ll ' oo 2NkT<a):<2 vi-Fe(ri)>—<2 u(ri)'Fi>- (59
0.05 0.1 ' '

If all the particles have the same mass, then using(&qt
FIG. 6. k-dependent shear viscosities for 4RF. As the systentan be shown that
size increases, the viscosity decreases, indicating that the greater the
number of particles in each roller, the less granular the system.

iF
<E| Vi.Fe(ri)> = Iz—ni [(1,—1)-J(kq,kq)

P(ky k) — p(k |<)|—77ulk1(1 0) (54)
SRR o ) HLD-I(ky, k)]
Combining the two nonzero components gives nu,F,L2
Pi(ky k) — PYY(Ky ky) = mlisks (55 2
Using the result obtained from momentum conservation, Eqysing the constitutive equatici®6), we obtain a second in-
(41), it can be shown that the viscosity is dependent route to the shear viscosity
nk,; 56
T 20,k (56)

p 1
=5 {2nkT<a)+N <Z u(ri)~Fi>]. (60)
This route to the shear viscosity and for our standard state 1K1 '
this gives the effective viscositiat F;=0.25 to be 3.1053.
For our standard state we can compare values obtained from
B. Case 2: k=(k,,=k,) the two routes to the viscosity. The terdu(r;)-F;)
=0.004 31 anda)=0.054 91. Thus the viscosity from this
route is%=3.1034, compared witlp=3.1053 from the con-
0 0 stitutive equation(56). Such good agreement between the
)_ (57)  values of the viscosity from the two routes gives us confi-
0 0 dence that the thermostating mechanism is working cor-
rectly. Equation59) is simply a balance between the energy
C. Case 3: k=(k,,0) and k=(0k,) supplied to the system by the external field and the energy
removed by the thermostat. Although each estimate of the
viscosity is not accurate to the number of digits quoteat
rather has an accuracy of about 3—4 %e difference be-
. (58  tween the two numbers suggests that almost all the energy is
removed by the thermosténd not byad hocvelocity res-
ﬁélling). Thus, despite the approximation used to calculate the
instantaneous value of, Eq.(32), the thermostat is working
remarkably well.

This is not one of the fundamentals for 4RF so

E(kzi“—”kz)—p(kzyikz)'::(

Again, this not one of the 4RF fundamentals, so

0
E(kZIO)_p(kZ!O)L:(O 0

These two cases suggest that the off-diagonal elements of t
pressure tensor are zero for these harmonics.

Figure 6 is a graph showing the variation of the viscosity
with the applied external field for different valueslaf. The
viscosity cannot be accurately determined when the external
force is less than~0.1 because the signal-to-noise ratio is
too small. Similarly, when the external force becomes too The same process can be repeated for the heat flux con-
large (F,>~0.3), higher harmonics of the streaming veloc- stitutive equation(15). Direct calculation of the heat flux
ity appear and the thermostating mechanism loses stabilityector, temperature gradient, and streaming velocity ampli-
As can be seen from Fig. 6, the viscosity decreases wittude allows the evaluation of the thermal transport coeffi-
decreasing; . This is expected ds, is directly linked to the  cients.

VIl. THERMAL CONDUCTIVITY
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FIG. 7. Plot showing the variation in thé(,k;) harmonic of FIG. 8. Thermal conductivities for systems at differkntectors
the heat flux vector. The lines are a linear interpolation between thealculated from Eq.64). The arrow represents the zero-wave-
data points. vector limit for the thermal conductivity, calculated by Hansen and
Evans[16].
A. Case 1: k=(kq,%xky)
For this case C. Case 3: k=(k,,0) and k=(0k,)
_ This case is also of interest as the second term on the RHS
Jo(ky, k) =i(ky, =k)NT(Ky, =Ky). (61)  of Eq. (15) is again nonzero. So
The numerical results for the standard state give a tempera- i §k§u§
i Jo(kz,0)=i(k;,0)| AT(k,,0)+ 2 (64)
ture harmonic of T(k;,*tk;)==%0.001. The heat flux
vector ‘]Q(kl!kl): (00346,_ 00340j and ‘]Q(kll_ kl) and
=(0.0369,0.0371) but the RHS of Eq(61) would suggest
that [Jo| ~0.0002. It is somewhat surprising that there is a k22
response in the heat flux vector lat (k,,k;) as almost no JQ(O,kz)zi(O,k2)< AT(0ky)+ j, 1). (65)
temperature gradient is observed. Physically, this corre-

sponds to a heat flux in the opposite direction to the stream'iOr the standard statdoy(K,0)=0.1241 and Joy(0K,)
Qx\h2,Y)— . Qx\ M2

ing velocity. Figure 7 shows the variation of tdg(k,k;) —0.1234 and the temperature harmonics a@k,,0)
harmonics as a function of field. The lines on the graph are_; 9066 andT(0k,)=0.0277. This gives a secondZ'inde—
second-order polynomial fits to the numerical data. ' "2 : : 9

pendent equation involving and ¢, that is,

B. Case 2: k=(k,,%ky) A+0.31£=11.3. (66)
For this case both terms on the RHS of Etp) contribute  Combining these two equations, we get the following esti-
nonzero terms as mates for the two transport coefficients11.9 andé=—1.9.

. The only other numerical estimate f@ris a very recent
§uiky result obtained by Todd and Evajk3] for Poiseuille flow,
8 /) which givesé~70. The result obtained here is for 4RF ge-
(62 ometry and a particulae vector, and external field strength,
so a meaningful comparison of these two results is not pos-
The numerical results for the standard state are thatiPle- o .
Jo(kz,kp)=(0.0259,0.0294) and Jo(k,,—ky)=(0.0154, The thermal conductivity\ can also be calculated in a
—0.0425) for a temperature harmonic of (k,,*Ks,) more2 gsual nonequmbnum. way. That is, we can p)ot'
=0.0067. From Eq(62) we can obtain four different equa- *£kiu1/4T(0k;) as a function of the external field ampli-
tions, each of which has the same RHS. In the four cases tHgde F;. As F; approaches zero, the second term becomes
numerical value of the LHS is 9.45, 10.7, 5.7, or 15.7. Tak-negligible and we recover the thermal conductivity. Figure 8
ing the average of the LHS, we obtain shows a plot of the thermal conductivity as a function of the
external field amplitude. Hansen and Evab8] calculate the
k—0 value of the thermal conductivity for the same system
to be of the order of 1250.6. The results obtained here
both from Egs.(63) and (66) and from Fig. 8 are consistent
This is essentially one equation for the two unknowresnd  with the value obtained by Hansen and Evans. The nonlinear
3 effects appear to increase with decreading

JQ(kz,ikz):|(k2,ik2) )\T(kz,ikz)‘l‘

A+0.624=10.7. (63)
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VIll. CONCLUSION bars would be much larger, possibly as much as 100%, even

The numerical results for the conservation equations shov?/aStmg doubt on the sign of this term.
q The observation of a heat flux component of the same

Fhat th_e hy drodynamic deSC!’IptIOI’] .Of a fluid of 896 par.t'CIeSvector character as the streaming velocity but in the opposite
n periodic boundary °°’?d'“°”S is completely Cons'Stemdirection is somewhat surprising. The are a number of pos-
V.V'th the molecular-dyr_lamlcs re_sults. In all cases the p.red'céible reasons for this and further work would be required to
tions of the conservation equations agreed with the simula;

. . S : determine the physical origin of this effect. There are a num-
tion resuits. This tests the applicability of hydrodynamics tober of possible causes. The thermostating mechanism used in

small systems and verifies the microscopic representatiorﬁis work contains an approximatiégg. (19)] and although
¢ .

e et ih eror assoiated i that sppromation seems el
9 Y- most 5% error in the value af), it may be large enough to

e a1 ccount or the e heat 0.3, Alermathely, th
9 P ' extra heat flux may be associated with small perturbations of
other cases, such as the nonfundamektabctors for shear

viscosity, they predict the absence of particular harmoni%rée streaming velocity that were ignored by considering the

X A reaming velocity to have the same functional form as the
responses. Often in these cases, these are limitations of t g y

nstitutiv tion as the numerical result show the exi iving force. If this is the case, then adding higher-order
constilutive equation as the humerical resuit sno € eXlSterms to the streaming velocity may remove the effect. Also,
tence of a nonzero response.

) . . it has been noted that the nonlinear hydrodynamic instabilit
The value of the viscosity at nonzekovector is not much Y Y Y

. ; associated with the nonequilibrium thermal conductivity al-
different from the zerdevector result ofy=3.80. As this d y

. o : ; orithm is the appearance of a solitonlike shock wave trav-
method is specific to the particular flow pattern and yleldsg bp

. . eling at supersonic speed whose normal is parallel the ap-
results for a discrete set &f vectors, a much more detailed g P P P P

plied field [25]. It is certainly possible that a similar
study would be necessary to thoroughly exploreki=pen- o jinear instability could perturb the streaming velocity and
dencg of the viscosity. The combmgd use of the ConSt'tu“V%roduce an extra heat flux contribution.
equation for the heat flux, at two differektvectors, allows
independent estimates of both the usual thermal conductivity
and also the transport coefficieéit Our results suggest that
for 4RF the thermal conductivity is abowt=11.9 and the We thank the Research School of chemistry, The Austra-
coefficienté=—2. The accuracy of the thermal conductivity lian National University, for support during the course of this
is probably better than 10%, with the largest source of errowork. G.P.M. would particularly like to thank Peter Daivis

being the extrapolation to zeta However, foré the error  for valuable discussions.
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